论文部分内容阅读
双金属团簇因其独特的光学、磁性和催化等性质,而具有潜在的应用价值。双金属团簇的性质与团簇的结构和化学组分有着密切的关系。由于原子间相互作用强度的不同,对双金属团簇的稳定结构的形貌影响很大,目前的理论研究已经发现,Co-Cu团簇系统中出现明显的偏析效应,而Ag-Pt团簇系统中Ag和Pt原子在团簇表面具有较大混合程度时,团簇更稳定。为了更清晰的理解双金属团簇的结构形貌和团簇稳定性之间关系,则需要检索研究更多的异构体。由于双金属团簇的结构复杂性,全局搜索双金属团簇的异构体一直是团簇物理学科寻求解决的研究内容。由于双金属往往具有大量的异构体,尤其是具有相同的几何结构情况下,很多异构体之间的能量差异往往很小,因此在分子动力学模拟过程中实现团簇系统的快速高度收敛是十分必要的。此外,随着团簇尺寸的增加,合金团簇的稳定结构往往呈现明显的核壳特征。理论上往往采用基于经验势函数的分子力学模或遗传算法等方法检索稳定的核壳结构。但是随着团簇尺寸的增加,计算量也随之增加,进而影响计算效率。如何快速而高效地搜索到稳定的核壳结构团簇也是一个需要解决的研究内容。本文,在计算方法上,我们提出了固定结构双金属团簇的全局快速检索方法。我们还发展了核壳结构团簇的高效计算方法。利用新的计算方法并结合第一性原理计算,我们分别研究了二十面体PdxAg13-a(x-0-13)和CuxAg13-x(x=0-13)团簇的结构,磁性以及偏析效应等性质。我们还研究了三层核壳结构的B@Fe8@Mg10和B@Mn8@Mg10团簇的结构和磁性,并计算了以其为结构单元的纳米链的磁矩,主要内容如下:我们提出了一个修正的Velocity-Verlet算法,实现了团簇结构的快速高度收敛的分子动力学模拟计算。在此基础上,我们发展了一个针对固定结构的双金属团簇异构体检索方法。进一步利用基于密度泛函理论(DFT)的第一性原理计算,我们研究了二十面体的PdxAg13.x(X = 0-13)团簇。经过DFT优化,这些团簇都保持良好的二十面体,其原因是由于Pd和Ag原子间很强的s-d杂化效应。当Pd原子处于团簇中心的时候,团簇更稳定。当团簇表面的Pd和Ag原子的混合程度越大,团簇越稳定。我们发现当X = 5时,PdxAg13-x团簇的磁矩淬灭。当0≤x≤5,随着X逐渐增加,磁矩从5μB线性减小到0。当5≤x≤13,随着X逐渐增加,磁矩从0线性增加到13μB沖。通过计算PDOS,我们发现当0≤x≤5,团簇的磁矩主要来自Ag原子的s电子,当5≤x≤13,团簇的磁矩主要来自Pd原子的d电子。利用修正的Velocity-Verlet算法和固定结构的双金属团簇异构体检索方法,我们还研究二十面体的CuxAg13-x(X = 0-13)团簇。经过DFT优化后,绝大多数的Cu-Ag团簇均保持良好的二十面体结构。对于二十面体Cu-Ag团簇,当Cu占中心时,并且偏析程度越高的团簇越稳定。很强的Cu-Cu相互作用,导致二十面体的CuxAg13-x团簇因中心原子不同而出现一个明显的结合能之差。通过计算偏析程度最高的二十面体CuxAg13-x团簇的HOMO-LUMO能隙(最高占据轨道与最低未占据轨道能量之差),发现团簇的能隙随着Cu含量的变化出现较大的变化,并与团簇的平均键长和键比例密切相关。在所有计算的Cu-Ag团簇中,我们发现当Cu原子具有最大聚集程度的Cu7Ag6团簇具有最大能隙。我们提出了逐个微位移压缩膨胀模型,并在此基础上,发展了快速高效的核壳结构团簇的计算方法。这种计算方法不依赖于初始团簇结构,并且实现了上百个原子的大尺寸核壳团簇结构的快速计算。由于只有压缩膨胀两种操作,其简洁性使得计算过程的设计可以更加灵活多变,从而更加丰富了计算结果。通过对大量己知稳定团簇结构的快速计算,我们发现稳定核壳结构团簇中的外部原子往往是在核团簇势场下的最优排列。利用该计算方法,我们计算得到了一个新的三层核壳结构A@B8@C10团簇,并计算了 B@Fe8@Mg10 B@Mn8@Mg10的结构和磁性,发现最稳定结构中的磁性为:中间层的Fe/Mn原子磁矩轴向平行,而内层B原子和外层Mg原子的磁矩方向与Fe/Mn磁矩方向相反。B@Fe8@Mg10的总磁矩为17μB,Fe原子的局域磁矩为2.1~2.44μB,B@Mn8@Mg10的总磁矩为23μB,局域磁矩为2.689~3.028μB。以A@B8@C10团簇为单元,我们设计并研究了 Fe/Mn磁矩轴向平行的Mg2BN-1(Fe4Mg4)N和Mg2BN-1(Mn4Mg4)N(N = 2-8)纳米链。经过DFT计算后,发现两个纳米链均保持良好的结构对称性,而且总磁矩随着单元数目近乎线性增加。