论文部分内容阅读
由于工程机械作业环境恶劣、作业工况复杂,驾驶员在操纵过程中需要频繁的换挡以满足车辆对动力的要求,这大大提高了驾驶员的劳动强度。由于驾驶员除了换挡操作还需要操纵工作装置,高强度的换挡操纵导致了作业效率的降低。采用自动变速技术是解决这一问题的途径。本文结合实际项目开发,以目前装载机使用的液力变矩器串接机械变速箱的传动方案为基础,在前人研究成果基础上进行理论和工程实践研究,研制ZLM50装载机自动变速控制系统,包括控制系统硬件和软件设计、换挡控制理论的研究。全文共七章,以下做简单介绍:第一章绪论。简要介绍了车辆自动变速技术的发展历程和工程机械应用自动变速技术的现状,介绍了自动变速技术的原理和系统组成,分析了工程机械实现自动变速的意义,进而确定了本文的研究内容。第二章建立“人—车—环境”仿真模型。首先就装载机传动系各组成部分进行了系统的分析,建立了包括发动机、变矩器、变速箱、工作阻力等传动系统各部分的数学模型。第三章通过分析装载机操作特点,建立了装载机驾驶员的模型。在分析装载机作业过程和作业环境特点基础上,建立了作业环境模型。作业环境模型用于驱动整体模型的仿真。以上三个模型构成了完整的“人—车—环境”仿真模型。在分析汽车燃油经济性指标基础上,结合现有装载机经济性评价方法,提出了多工况燃油消耗率和组合工况完成时间作为新的经济性和动力性指标。第四章换挡品质研究。在自动变速系统开发过程中对提高换挡品质的方法进行了研究,提出了优化的动力换挡变速箱换挡过程离合器油压控制曲线,并且通过平稳结合阀的试验进行了验证。良好的换挡品质不仅可以提高车辆传动部件的使用寿命,而且通过改善驾驶员操纵的舒适性可以更好的发挥自动变速技术的性能。第五章在分析国内外自动变速技术的研究和使用现状基础上制定了自动变速控制系统的总体设计方案,拟定了自动变速控制系统采用的换挡策略。第六章为控制系统硬件和软件设计以及系统的试验。遵循国际标准,以功能性、安全性和可靠性为目标,完成了以变速器换挡控制单元(TCU)的设计。设计了基于实时操作系统的控制软件架构,完成了基本软件模块的设计和调试。在自行设计和制作的模拟试验平台上对自动变速控制系统进行了基本功能试验,结果表明,TCU硬件电路和软件工作正常,所开发自动换挡控制系统已达到预计的设计目标。第七章为全文的总结,阐述了论文主要研究工作的结论并对后续的研究工作作了展望。