【摘 要】
:
乘员舱和电池热管理对电动汽车来说尤为重要,它们通常通过空调系统实现。相比于夏季,冬季低温工况下,热泵空调系统的能耗对SOC减小、续航里程降低的效果更为显著。因此,如何为热泵空调系统设计一个智能控制策略,在保证乘员舱内环境舒适和电池工作正常的同时尽可能减少系统能耗是一大研究热点。为此,本文针对冬季低温环境下,对基于热泵空调系统的乘员舱和动力电池热管理的控制策略设计展开了研究,主要研究内容及成果如下:
论文部分内容阅读
乘员舱和电池热管理对电动汽车来说尤为重要,它们通常通过空调系统实现。相比于夏季,冬季低温工况下,热泵空调系统的能耗对SOC减小、续航里程降低的效果更为显著。因此,如何为热泵空调系统设计一个智能控制策略,在保证乘员舱内环境舒适和电池工作正常的同时尽可能减少系统能耗是一大研究热点。为此,本文针对冬季低温环境下,对基于热泵空调系统的乘员舱和动力电池热管理的控制策略设计展开了研究,主要研究内容及成果如下:首先,利用集总参数法和移动边界法建立了热泵空调系统的动态模型,并利用空调系统各个部件的实验数据进行仿真对比验证,其结果表明所建立的Simulink模型能够有效的模拟实际部件的相关性能表现。利用集总参数法建立了乘员舱热模型,最终将两个模型结合从而建立了面向控制的热泵空调-乘员舱动态热模型,利用实验数据验证了该面向控制的耦合模型的准确性。其次,为热泵空调-乘员舱动态热模型设计了具有节能效果的智能MPC控制策略,其中,乘员舱目标温度是基于PMV计算,以乘员舱内CO2浓度模型作为反馈来控制回风风门。将其与另外设计的PID和On-off控制器进行仿真对比分析。结果表明,本文所提出的MPC控制策略比另外两个对比控制策略在节能和乘员舱温度控制方面均表现良好。为进一步研究乘员舱与电池相结合的整车热管理,将Rint等效电路模型和Bernardi热模型结合从而建立了动力电池热-电耦合模型。利用开路电压和温熵系数实验获得OCV、d U/d T与SOC之间映射的关系,利用HPPC实验获得等效内阻与温度、SOC和放电倍率之间的拟合函数关系。进一步将基于MATLAB/Simulink平台搭建的电池仿真模型与温升实验进行对比验证,结果表明模型能够有效反映电池的真实情况,具有足够的预测准确度。最后,将所建立的热泵空调系统模型、乘员舱动态热模型、电池热-电耦合模型和电池加热回路模型耦合,从而形成了电动汽车乘员舱和电池热管理系统模型。进一步,为减少控制器优化求解复杂度,为其设计了带有DMPC控制器的热管理控制策略,其中DMPC采用非合作博弈方法迭代求解。将控制策略与另外的PID和规则控制器进行仿真对比分析。结果表明,设计的DMPC控制器不但表现出较好的节能效果,还表现出较好的乘员舱温度控制和电池温度控制的稳定性和精确性。
其他文献
随着我国经济的快速发展,各大城市的汽车保有量逐年攀升,导致城市内停车难问题日益突出。在智能停车系统中实时获取停车位的状态信息能更合理的分配停车位资源,减少道路交通上的拥堵,与此同时,在车辆室内定位技术的加持下更可以有效的提高停车效率,减少寻路找车位带来的不便。现阶段的车辆室内定位技术尚不成熟,停车位检测技术又功能单一,两者独立的系统不仅成本高,发挥的效率还低,无法满足当前智能停车系统中实现高效率停
未来一段时间内,网联和自动驾驶车辆仍将处于人机合作的形式,节能速度规划是智能汽车的重要组成部分,其能够提高智能电动汽车的续航里程。然而,现有的节能速度规划研究主要集中在降低能耗方面,很少考虑规划轨迹能否满足驾驶员的驾驶风格需求,尚缺乏综合考虑能耗、舒适性、行驶时间和驾驶风格的研究。为了提升智能汽车速度规划系统对驾驶员驾驶风格的适应性,本文以智能纯电动汽车为研究对象,开展关于考虑驾驶风格的速度规划及
进入新世纪以来,汽车工业取得了飞速的发展。然而迄今为止,绝大多数汽车产生动力的来源仍以燃油为主,当今世界同时面临着石油短缺以及内燃机排放物导致的环境污染两大难题。混合动力汽车结合了电动汽车与内燃机汽车的优势,是解决上述问题的有效途径之一。传动构型方案是混合动力汽车发挥节能减排作用非常重要的一环。双电机平行轴式混合动力汽车能够实现多档位的切换,在整车的燃油经济性以及动力性方面都有很大的优势。本文从典
增程式电动汽车作为新能源汽车的一种类型,具有结构简单、续航里程长、排放小的特点。但在实际运行过程中,发动机运行温度会影响整车能耗,且发动机运行温度与发动机启停和环境温度密切相关,此外,发动机启动和因环境温度产生的热需求也会带来额外的能耗。能量管理策略作为新能源汽车的关键技术之一,其作用是在发动机和电池之间合理的分配功率,是提高整车经济性重要手段。针对上述问题,本文开展了CS(Charge Sust
高功率大扭矩齿轮传动装置被广泛应用于航空发动机、舰船推进系统、矿山运输机械等大型机械设备,因其结构复杂,传递功率高、扭矩大,相比其他传动装置更容易引发因箱体本身刚度不足和支撑刚度不匹配所带来的箱体变形与齿轮啮合性能恶化,进而造成齿面磨损、胶合、大的振动烈度、噪声等。在设计高功率大扭矩齿轮传动装置的齿轮箱时,传统的设计方法往往是对箱体壁进行加厚,虽然这样能使齿轮箱的静态和动态性能得到有效改善,但是却
自工业革命以来,石油等不可再生能源的大量消耗导致了大气中温室气体浓度显著增加,能源危机和环境问题日益严重。纯电动汽车等新能源汽车逐渐取代传统燃油汽车已成为必然趋势。锂离子电池作为纯电动汽车的核心,尽管目前应用广泛,但仍存在能量密度相对不足,充电困难且时间长导致相对续驶里程短,易引起里程焦虑,电池组容量衰减老化后更换成本高等问题。提升电池性能是解决这些问题的根本途径,而研究电池机理是电池性能提升的基
经济的快速发展不断刺激着人们日益增长的出行需求,交通运输也成为了能源消耗与温室气体排放的主要来源之一。城市信号交叉口有着维持交通秩序,指挥交通运行的功能,但交通信号冲突会引起交通流的中断,车辆受到信号交叉口的影响处于频繁加减速、怠速停车等高油耗高排放状态。因此,如何针对城市交通流进行合理的车速规划,提高道路通行能力,减少汽车燃油消耗与排放,具有重要的实践意义。在此背景下,本文以智能网联环境下的多模
齿轮传动系统作为机械装备的核心组成机构之一,是决定整机性能的主要装备,而充分润滑是确保齿轮传动系统正常运转的必要条件。现代齿轮传动系统向高速重载方向发展,传动系统对润滑性能的要求也逐渐提高,恶劣的工作环境会使齿轮啮合界面无法形成有效油膜,导致传动效率和可靠性下降。因此,有必要对高速重载齿轮啮合界面进行混合润滑仿真,以准确获取啮合界面混合润滑特性参数,提出优化建议,确保齿轮传动系统处于良好的润滑状态
柔性薄膜因具有轻质、可折叠等特点,被广泛的应用于航天工程领域;利用柔性薄膜材料构成的空间充气结构成为了目前广为关注的一种重要航天工程新型空间结构。局部收到压力后,薄膜易发生屈曲并形成褶皱。航天工程中,充气结构的褶皱被认为是一种失效现象。对这种失效现象进行的力学研究有利于提高空间充气结构的使用性能。本文以此项需求为研究背景,开展以下研究:充气柱轴压失稳现象的散斑实验,以及基于Stein-Hedgep
双摆是一种常见的力学模型,是由两个简单摆耦合而成、最简单的二自由度系统。双摆系统在运动过程中,第二摆的运动轨迹通常是杂乱无章、毫无规律的,在初始参数确定的情况下,仍然显示出高度的复杂性,而确定系统的内在随机性是混沌的特征之一。然而,有研究表明双摆系统并非一直存在混沌性,在某些特殊的参数条件下,第二摆的运动轨迹也可以是拟周期的,因此,确定双摆系统混沌的参数条件对双摆混沌性研究有重要的意义。双摆虽然是