论文部分内容阅读
随着航空航天事业的高速发展,航空航天飞行器的服役环境越来越复杂,复合材料具有高比强度、良好的抗疲劳性、耐腐蚀性以及绝缘、热导率低等优点,在航空航天飞行器使用比重越来越重,其中复合材料蜂窝夹芯结构在飞行器上的使用非常广泛。但复合材料和复合材料蜂窝夹芯结构都对冲击载荷较敏感,当复合材料结构受到冲击载荷时,结构易发生基体开裂、碳纤维断裂、碳纤维分层和蜂窝芯子塌陷等损伤,而这些损伤严重影响飞行器的安全性能和使用寿命,因此对航空航天飞行器进行健康监测与评估非常重要。光纤光栅传感器具有体积小、抗电磁干扰、灵敏度高、易于构建分布式传感网络并适合与复合材料一体化集成等独特优点在结构健康监测领域得到了广泛应用。因此,本文针对复合材料和复合材料蜂窝夹芯结构进行冲击监测研究,主要工作包括以下几个方面:首先,利用光纤光栅传感器易与复合材料一体化集成的特性,将光纤光栅传感器与复合材料蜂窝夹芯结构一体化集成,并提出相应的光纤光栅端口引出方式和论证了光纤光栅传感器存活率的方法,接着对埋入复合材料蜂窝夹芯结构的光纤光栅进行静态加载和冲击载荷加载实验,对埋入式光纤光栅传感器的动静态敏感特性进行了研究。其次,利用复合材料蜂窝夹芯板结构,搭建了基于埋入式光纤光栅传感器网络冲击监测系统。利用埋入式光纤光栅传感器动静态敏感特性研究,对不同埋入层的光纤光栅传感器冲击响应信号和同一埋入层不同光纤光栅传感器冲击响应信号之间的共性和差异性进行分析,再提出了一种基于最大向量内积的冲击位置识别算法,初步实现了冲击载荷位置识别。最后,针对复合材料冲击载荷监测需求,构建了基于分布式光纤光栅传感网络冲击监测系统,利用EMD模态分解技术对冲击响应信号进行分解,对分解后的IMF分量提取出相应的分形盒维数作为冲击载荷特征量,提出了一种基于EMD分形的冲击载荷位置识别方法,初步实现了冲击载荷位置识别。