【摘 要】
:
基于参量阵原理的屏幕定向扬声器是一种能够同时呈现画面和产生高度指向性可听声的新型屏幕扬声器,它利用超声波在介质中自解调产生定向可听声。由于介质的自解调过程是非线性的,受温度、湿度、信号处理算法和屏幕定向扬声器本身特性等多种因素的影响,导致屏幕定向扬声器解调出的可听声存在失真,对设备的音质有较大影响,因此本论文主要围绕屏幕定向扬声器的谐波失真进行研究,为便携式设备的屏幕定向扬声器实现高保真音质提供一
论文部分内容阅读
基于参量阵原理的屏幕定向扬声器是一种能够同时呈现画面和产生高度指向性可听声的新型屏幕扬声器,它利用超声波在介质中自解调产生定向可听声。由于介质的自解调过程是非线性的,受温度、湿度、信号处理算法和屏幕定向扬声器本身特性等多种因素的影响,导致屏幕定向扬声器解调出的可听声存在失真,对设备的音质有较大影响,因此本论文主要围绕屏幕定向扬声器的谐波失真进行研究,为便携式设备的屏幕定向扬声器实现高保真音质提供一种可行的方案。根据非线性声学理论,本文首先阐明了参量阵屏幕定向扬声器的基本工作原理,从理论上推导了矩形换能器的指向性表达式,归纳出了阵列的指向性方程,明确了屏幕定向扬声器谐波失真的原因,指出了现有声学模型的不足之处。针对介质的非线性效应引起的屏幕定向扬声器谐波失真问题,本文通过系统辨识的方法来建立参量阵屏幕定向扬声器的数学模型,在该模型和双边带调制算法的基础之上,提出了一种基于非线性声学和自适应滤波基本理论的预失真补偿算法。从理论上探讨了本文提出的改进算法中的参数和参数对算法性能的影响,使用MATLAB验证了本文提出的算法相对于传统LMS算法、NLMS算法和SVSLMS算法具有更快的收敛速度和更好的稳定性。根据以上理论研究结果,本文以参量阵屏幕定向扬声器作为发声器件,选择对应的芯片设计了基于FPGA的屏幕定向扬声器硬件平台,搭建了屏幕定向扬声器的测试系统,对屏幕定向扬声器做了超声频率响应测试、可听声频率响应测试、指向性测试、声场形态测试以及失真测试。超声频率响应测试、可听声频率响应测试、指向性测试和声场测试的结果表明各项指标均符合使用标准,失真测试结果表明,本文算法相对于无预失真补偿的调制算法,各高阶谐波均有下降,总谐波失真降低了7.49%,测试结果验证了本文提出的补偿算法的有效性。结合本文的理论研究与实验测试结果,可以得出本文提出的补偿算法能够抑制屏幕定向扬声器谐波失真的结论,从而改善便携式设备的屏幕定向扬声器可听声音质。
其他文献
随着互联网的高速发展,金融行业的业务模式也随之发生着改变。为了更好地满足年轻代的用户需求,传统金融行业巨头纷纷进军互联网投资理财领域,互联网催生了诸如东方财富、同花顺、雪球财经等互联网证券门户和社区。股民们倾向于在互联网证券社区表达自己对市场的观点,并通过各种互联网渠道搜索信息制定交易策略,产生了海量观点鲜明的文本数据。研究对金融文本数据的分析方法具有重要的商业价值。本文在研究金融文本分析方面做了
近年来,随着人工智能和计算机视觉的飞速发展,图像补全已成为重要的研究领域,被广泛应用于摄影、安防、医学等各个行业。传统的图像补全算法在实际应用中效果并不理想。随着近几年深度学习在图像处理领域不断取得显著成果,生成对抗网络(Generative Adversarial Networks,GAN)凭借强大的特征表达和学习能力逐渐替代了基于像素扩散和基于补丁块类的传统图像补全算法。本文分析国内外图像补全
滴滴等网约车已成为人们出行的主要方式之一,保障司乘安全、减少交通事故是所有网约车平台的核心关注点,疲劳驾驶、分心驾驶等异常驾驶行为是引发交通事故的重要因素。目前,网约车平台避免疲劳驾驶的解决方案主要是对驾驶员的驾驶时长计时,超过指定的时间后就停止给驾驶员派单。这种一刀切的解决方案,没有根据每个驾驶员的具体情况而制定不同的监管措施,而对于分心驾驶,此类平台目前未采取有效的措施进行监管。针对上述问题,
随着互联网的快速发展,网络中涌现出大量的匿名文本,这些匿名文本中不乏充斥着虚假信息、诈骗信息、甚至是危害国家安全的谣言信息。特别地,暗网因其与生俱来隐匿性,已经成为不法分子犯罪的理想场所。文本作者识别技术可以较好的发现并追踪网络文本的作者,从而打击、预防网络犯罪,维护网络环境的健康安全。现有的文本作者识别技术针对网络文本进行作者识别,其准确率及可靠性较低,且在文本特征筛选过程中人工参与度较高。因此
医学图像分割在定量分析、临床诊断和治疗过程中扮演着重要角色,基于编解码器架构的分割模型被广泛应用到医学图像分割中。在实际分割中,由于编解码器架构的编码器、跳跃连接、解码器组件的设计不合理,会导致出现多尺度特征融合不当、相似特征不相关、特征通道直接拼接引起语义鸿沟、上采样过程抽象特征丢失而利用不充分以及网络参数量冗余问题。这些问题是医学图像分割中的重大阻碍,本论文针对编解码器架构在分割中关键技术进行
磁共振成像(Magnetic Resonance Imaging,MRI)技术自1973年成功显示图像以来得到了迅速发展,已成为最有价值和应用最广泛的诊断成像方式之一。核磁共振系统对于接收线圈的信噪比具有较高的要求,高温超导技术对于高灵敏度的接收核磁共振模拟通路的研制具有重大意义。本文以利用高温超导薄膜材料研制了在1.5T磁场中、63.5MHz的频段研制了一款高温超导核磁共振接收模拟通路,其结构主
深度学习技术的飞速发展,催生出了一系列诸如计算机视觉,自然语言处理,强化学习之类的实际应用场景及方向,同时在安防监控领域也借助深度学习的发展迎来了技术手段上的变革。但是当前应用于安防监控领域的深度学习算法大多只停留在实验室阶段,虽然针对常用的数据集,当前的算法都能取得一个较好的精度,但在真实场景下,算法的精度和实时性能都不能达到实际应用的要求,所以急需一套智能化人体行为检测系统去解决当前真实场景下
字符识别是受到学术界和工业界重视的技术,需要根据针对性的场景设定和模型设计来解决相关实际问题。芯片字符识别作为字符识别的一种特殊场景,可以解决工业缺陷检测、自动化配装芯片等广泛性的工业问题。早期芯片字符识别方法,例如模板匹配等,只能在固定字体和固定场景发挥效果,但近年来随着深度学习算法的扩展和显卡浮点性能的增加,深度学习模型能够识别更多相似字体和更多场景的芯片,但深度学习模型的高精度基本建立在大量
移动边缘计算(Mobile Edge Computation,MEC)通过将计算资源部署到网络边缘,在地理上缩短了与用户的距离,可以就近处理用户的请求,避免了漫长的网络传输,从而提高服务的响应速度。由于边缘节点部署在网络边缘,单个节点的覆盖范围相对有限,因此用户的移动就有可能导致用户离开当前节点的覆盖范围而进入另外一个节点的覆盖范围。当用户从一个节点的覆盖范围进入另外一个节点的覆盖范围时,为了保证
本文以舰船、飞机等大型复杂装备电磁干扰现场检测为背景,把现场检测中的电磁干扰信号分类识别作为研究课题。针对大型装备面临的电磁干扰现场检测与故障模块查找问题,设计了一套EMI信号分类识别系统,构建大型装备电磁干扰现场检测案例库,进行EMI信号采集与特征分析、故障模块定位。首先,介绍了该系统应用场景、技术指标和软硬件构成,对系统中涉及的虚拟暗室、特征提取、模板匹配等相关技术进行了分析。其次,针对系统中