论文部分内容阅读
同调理论在Coleman自同构中的应用
【机 构】
:
青岛大学
【出 处】
:
青岛大学
【发表日期】
:
2018年期
其他文献
自由曲线的插值研究作为计算机辅助几何设计的核心课题之一,其研究的主要内容是构造相应的符合光顺要求的自由曲线,并且使得该曲线严格经过或在一定误差范围内的拟合给定型值
本文研究了两类随机系数泛函自回归模型,得到了它们在某些条件下以几何速率收敛的充分条件。文章分为四个部分:第一章简单介绍了时间序列的发展和研究现状等;第二章是本论文的预
调和分析的思想方法和精细技巧几乎渗透到了数学的所有领域,尤其与微分方程的研究密切相关。Hardy型不等式在偏微分方程的多个研究方向中有着独特的作用,特别是带最佳常数的Har
框架是Riesz基的推广,具有Riesz基的某些性质。框架理论是继小波理论之后发展起来的一个新的研究方向,也是小波分析的重要组成部分。小波框架以其在时域和频域的优良特性而在工
本文主要使用了多元统计分析中的主成分分析和聚类分析方法对2004年天津市统计年鉴中各个区县的一些经济指标进行了分析,并且得到了一些有意义的结论。 各级政府在制定各类
在概率论中,研究随机变量的数字特征十分重要。而随机变量的数字特征中,最常用的数学期望和方差都是某种矩。矩(moment)是使用最广泛的一种数字特征,在概率论和数理统计中占有重
据世界卫生组织报道,目前全球约有20亿人感染了结核菌.每900万结核病患者中,约有140万人因患结核病而死亡,其中95%的病例发生在发展中国家.虽然因各类抗结核药物相继问世,以及
本文针对一维耦合非线性Klein-Gordon-Zakharov(KGZ)方程的初边值问题,研究了守恒的差分数值解法. 以方程本身的守恒律为出发点,本文构造了三个三层二阶精度隐式差分格式,其中第