论文部分内容阅读
传统的计算机由于其自身存储量和计算能力的有限,已经不能满足日益发展的科学形势。1994年,Adleman探索性的将现代生物技术与DNA操作技术结合起来,成功解决了具有七个节点的有向赋权图的哈密尔顿路径问题(Hamilton path problem),从此打开了生物计算的大门,让DNA分子作为一种新型的计算机硬件成为可能。而DNA分子由于具有传统计算机无法比拟的海量存储量和高度的计算并行性,使得其在密码学,数学,计算机等领域得到了广泛的青睐。本文将具体阐述DNA计算的研究背景、DNA分子结构、DNA分子操作过程等基本理论,并且对DNA分子操作过程中的初始编码问题进行了具体的分析,包括初始编码问题的基本概念,初始编码的约束条件和具体的编码方法;还将简单介绍一些常用的DNA计算模型(剪接模型、分子信标、质粒DNA模型以及DNA自组装模型等)的基本操作原理及优缺点。此外,本文将具体介绍最小顶点覆盖问题、可满足性问题、线性规划问题的基本概念,并巧妙的将复杂的最小顶点覆盖表转化为形式简便的0-1规划问题和可满足性问题,这也是本文的创新之处。并在此基础上,结合DNA自组装模型、质粒DNA模型,给出基本算法和具体生物操作过程,具有一定研究意义。