论文部分内容阅读
活性炭具有比表面积高,孔隙结构丰富等性质,因此,活性炭作为催化剂载体和吸附剂在催化反应、生物分离、清洁生产等领域均有着广泛的应用。然而原始活性炭的电磁性能是较差。所以本研主要是想通过在活性炭的表面镀上一层金属,使活性炭既具有金属的特性同时又不破坏其原有属性,制得一种具有高传导率,高强度及吸附性能优良的活性炭复合材料,从而拓宽活性炭的应用领域。本研究以椰壳活性炭为主要原料,采用非钯活化化学镀工艺,制备出了镍基磁性活性炭。实验中探讨了化学镀工艺中各个条件对活性炭孔容积及比表面积、金属化率的影响,并通过研究不同条件下镍基磁性活性炭对亚甲基蓝和碘溶液的吸附值的改变来探讨不同条件下镍基磁性活性炭吸附能力的变化。通过扫描电子显微镜观察了镍基磁性活性炭的表面形貌。通过EDS能谱分析了镍基磁性活性炭镀层的主要成分。因为我们想要制得的材料同时具有活性炭和金属的性质,所以我们又对样品的电磁性能进行了研究。实验结果如下:经过实验讨论,确定了最佳的化学工艺条件,即:施镀温度为70℃,镀液的pH值为8-9,活性炭的颗粒度为200~400目。化学镀后,镍基磁性活性炭表现了良好的吸附性能,其对亚甲基蓝的吸附值可以达到142.5 mg/g,对碘的吸附值可以达到1035mg/g。其金属化率随着镀液用量的增加而增加,比表面积和孔容积的值则随之减小。其数值分别从942.86 m2/g减少到859.12 m2/g,从0.462 mL/g减少到0.417 mL/g。其磁性强度随着金属化率的增加而成增大。通过SEM和EDS分析可知,活性炭化学镀镍后,其镀层连续、均匀、有金属光泽,有明显的孔隙结构,镀层中的主要成分为镍和磷,其中镍的含量为97.27%,磷的含量为2.73%。与原始活性炭相比,镍基磁性活性炭复磁导率的实部μ′与虚部μ″均有所增加,介电常数的实部ε′与虚部ε″则有所减少。另外,化学镀后,活性炭具有了一定的磁性,使镍基磁性活性炭适用于某些特殊的领域。总得来说,采用非钯活化化学镀法制备镍基磁性活性炭这一方法切实可行,所制备的产品可以应用到许多领域。