论文部分内容阅读
网络编码理论的核心思想是对网络中间节点引入编码操作,以达到提高网络传输吞吐量、可靠性、安全性,降低传输时延等目的。目前,网络编码所产生的额外计算开销成为了阻碍其实际应用部署的重要瓶颈之一。由于循环移位是一类计算复杂度低且易于通过软硬件进行高效实现的操作,其已应用于准循环低密度奇偶校验码、阵列码等信道编码技术的设计中。为了降低网络编码编译码复杂度,本论文研究以循环移位操作为编码基础的线性网络编码技术。特别地,本论文聚焦线性网络编码理论中最基础的网络模型—多播网络,通过引入向量线性网络编码的概念,提出一套循环移位网络编码系统理论框架,并在该框架下取得了一系列循环移位网络编码基础研究成果。具体研究成果主要体现在:揭示了基于有限域的标量网络编码与循环移位网络编码的本质联系、设计了多播网络下循环移位网络编码解构建算法以及刻画了循环移位网络编码多播容量三个方面。首先,将码长为L的二元向量循环右移的元操作建模为右乘循环移位矩阵,进而将循环移位网络编码建模成一种特殊的向量网络编码。在此框架下,论证了循环移位网络编码无法严格达到多播网络的多播容量,因此进一步提出了循环移位码分数线性解的概念。针对奇数码长L,提出了一种方式将任意基于GF(2mL)的标量解转化为循环移位码,并通过加入适当的信源预编码矩阵,构造出具有一定速率的循环移位性解,其中mL表示2的模L乘法阶。基于上述所揭示的标量码与循环移位码之间的本质联系,进一步证明了当L大于某一确定阈值时,任意多播网络都存在一个速率为ΦL)/L循环移位线性解,其中φ(L)表示L的欧拉函数。除了多播网络中速率为Φ(L)/L的循环移位解存在性证明,论文第二部分进一步提出了如何构建该种解的算法。基于网络编码经典流迭代算法的思想,首先设计了复杂度为多项式量级的局部编码核构建算法。与可严格达到多播网络容量向量解不同的是,分数线性解需要对信源预编码矩阵进行额外设计。因此,进一步提出了信源端预编码矩阵以及与之匹配的信宿端译码矩阵的一般性构建方法,并设计出了更低编译码复杂度的可用实例。论文第三部分对循环移位网络编码多播容量的刻画展开了进一步研究。首先,证明了对于一个多播网络,循环移位网络编码可以严格达到其多播容量的充要条件为该网络存在二元标量解。该定理印证了论文前两部分所研究的速率小于1的循环移位分数线性解是必需的。更进一步地,通过确定构建速率为(L-1)/L的素数码长循环移位解,证明循环移位网络编码可以渐进可达多播容量;另一方面,从随机码的角度也证明了循环移位网络编码多播容量渐进可达。为了文章的自含性,本文以多播网络作为拓扑模型,使用二元有限域及其扩展域作为编码符号集。然而,文章中部分已经得证的结论并不局限于上述模型,而是可以推广到一般网络或一般有限域的情况。这部分内容也在对应章节进行了分析和补充。