【摘 要】
:
一个互联网络时常被抽象为一个图,图中的点和边对应着互联网络中的处理器及处理器之间的连线.在互联网络中连通性是判断网络的稳定性的一个重要指标.如果两个点称为极大局部连通,是指这两点之间点不交的路的最大条数正好等于这两点的最小度中较小的一个.若一个图中任意两点都是极大局部连通的,则这个图称为极大局部连通的.考虑网络中某些节点出现故障的情况,即网络对应的图中有故障点,若图删除故障点得到的导出子图仍然满足
论文部分内容阅读
一个互联网络时常被抽象为一个图,图中的点和边对应着互联网络中的处理器及处理器之间的连线.在互联网络中连通性是判断网络的稳定性的一个重要指标.如果两个点称为极大局部连通,是指这两点之间点不交的路的最大条数正好等于这两点的最小度中较小的一个.若一个图中任意两点都是极大局部连通的,则这个图称为极大局部连通的.考虑网络中某些节点出现故障的情况,即网络对应的图中有故障点,若图删除故障点得到的导出子图仍然满足极大局部连通的性质,则此图称为容错极大局部连通的.在网络理论研究中关于匹配的问题同样是深受专家学者关心的问题.所谓匹配排除数是指去掉最少的边数使得图中没有完美匹配或者几乎完美匹配.本文研究的泡型星图是一个新型的互联网络,它是由著名网络泡型图与星图合并得到,因而结合了泡型图与星图的良好性质.本文重点研究了泡型星图的极大局部连通性和匹配排除数.主要结果如下:(1)泡型星图是(2n-5)-容错极大局部连通的以及(2n-6)-容错极大局部扇连通的,并且证明结论中的界是最优的;(2)泡型星图的匹配排除数是2n-3并且每一个最优的匹配排除集都是平凡的.
其他文献
我们考虑一致完全度量空间中在加倍测度意义的零测度集和正测度的集合,这些集合分别称为胖集和瘦集。最重要的结果是,我们给出充分条件让剪切集成为胖集或者瘦集。本文组织如下,第一章介绍了本文的研究的背景和意义以及本文的主要结论,第二章主要介绍一些基本的知识包括加倍测度、一致完全性、胖集和瘦集。第三章我们给出一个康托尔集成为胖集的条件。定理13将在第四章证明。最后我们给出与本文相关的例子和问题。
第一部分介绍了等参超曲面的发展背景及其国内现状.第二部分介绍张量丛的基本知识.第三部分介绍子流形的基本知识.第四部分介绍Lorentz内积空间上共形几何的基本知识.第五部分介绍自共轭线性算子的代数引理.第六部分介绍完全可积条件.第七部分是本文的主要内容,对等参超曲面有一个主曲率及两个主曲率的情进行分类讨论,并由完全可积定理证明所得结果的唯一性.
计算机在进行科学计算、处理数值问题的时候,由于受到存储空间和字长的限制,使得实数在存储的时候舍入了部分精度,从而产生了误差。当这些含有误差的数值再次参与运算,得到的新结果进一步产生误差。可见,误差在计算机进行数值计算过程中是无处不在的。C语言是计算机最基本的程序设计语言,它在科学研究以及工程领域中都有广泛的应用。对C程序源代码中的数值运算过程进行误差分析是非常有意义的。本文是围绕C程序浮点算法的误
平均曲率流是近年来微分几何中比较热门的一个研究领域.它主要研究的是给定一个初始的曲面Mo,并且Fo:M0n→Nn+r为嵌入子流形,则我们可以找到一族这样的映射F(·,t)满足发展方程其中,H(·,t)是平均曲率,v(·,t)是外单位法向量.我们关心的是随着时间的发展,曲面Mt的变化趋势.在此之前,我们知道在欧氏空间的情况下,若初始曲面是紧致无边且是凸的,则随着时间的发展,发展曲面Mt最终会以球面的
(n,k)-星图是Cayley图,具有许多优良的性质.(n,k)-星图作为一类重要的网络拓扑结构,可以用来设计大规模并行系统.设G是一个图,F (?)E(G).若对任意|F|≤f且δ(G-F)≥2,G-F均是哈密尔顿的,则称G是f-条件边容错哈密尔顿的.在本文中,我们对(n,k)-星图的条件边容错哈密尔顿性进行了研究.主要内容如下:第一章,我们首先给出了与本文内容相关的基本概念和符号,并阐述了本论
在这篇文章中,同样研究了M.Ali.Rosihan所研究的双单叶函数子族的系数的边界问题,并通过采用与M.Ali.Rosihan和别的作者不同的方法对这些双单叶函数族的第二项、第三项系数进行了估计,得到的更加精确的结果.本文主要由三个部分组成:第一部分是引言和预备知识,介绍了一些基本概念、相关的函数族记号以及本文所需要的一些理论基础.第二部分定义了双单叶函数族的五类子族,并研究了这些双单叶函数子族
本文主要运用收敛全平面上的随机Dirichlet级数的增长性和收敛半平面上的随机Dirichlett级数的增长性,研究了在随机变量序列不满足独立同分布的情形下,在Banach空间中,随机Dirichlet级数在收敛全平面、收敛半平面上的增长性.本文分三部分:第一部分,介绍了本文的研究背景及随机Dirichlet级数,并且介绍了随机Dirichlet级数在收敛全平面、收敛半平面上的增长性的研究结果.
本文主要研究了马氏链的基本定理及其应用,首先介绍马氏链存在定理及φ不可约链正小集存在定理,接着引入马氏链的周期及m骨架满足最小化条件,然后研究在一般状态空间下,存在可数细集的覆盖.最后研究了分裂马链,分析了原链与分裂链的关系,通过分裂马链圣性质来推导原链Φ的性质.
全脐子流形,前人对它的性质和特征在某些方面都做了很多研究,成果颇丰.我国许多研究者在这方面所取得的成果有自身特色,在国内外有一定影响.所研究的内容与理论物理、黎曼几何、复几何等密切相关,具有相当的现实意义.本文我主要定义了两个Schrodinger算子L1和L2,先详细研究球面中的极小子流形和全脐子流形,然后由这两个算子的第一特征值估计出全脐子流形在外围空间的一类应用.
我们结合约束路径量子蒙特卡罗方法和基于密度泛函理论的第一性原理数值计算方法,研究了边界重构和缺陷对正三角锯齿型石墨烯量子点的磁学特性和电子结构特征的影响。我们用四种不同的重构方式重新构建正三角锯齿型石墨型量子点的边界,计算不同尺寸的规则边界正三角锯齿型石墨型量子点(ZZ)和边界重构后的三角锯齿型石墨烯量子点(ZZZ5-7-5、ZZ7-6-5、ZZ6-6-5、ZZ765)在不同自旋多重度下体系的能量