论文部分内容阅读
Mg具有高的理论储氢密度(7.6 wt.%),制备成本低,资源丰富并且对环境无毒害,是一种很有前景的储氢材料。然而Mg H2的热力学非常稳定,需要在300~400℃下才能脱氢;Mg的吸放氢动力学性能较差,这些缺点严重阻碍了Mg基储氢材料的大规模应用。目前常用纳米结构化、添加催化剂、合金化、形成复合结构、改变反应路径等改性方法来改善Mg基储氢材料的吸放氢热力学和动力学性能。Zr已被证实为一种可以有效催化Mg的吸放氢反应的添加剂。然而,目前关于Mg-Zr(-O)储氢体系的研究仍较少,少有研究者深入分析其微观结构与储氢性能之间的关系,关于Mg-Zr储氢体系的催化机理研究也较罕见。如制备添加催化剂的Mg基薄膜,可以同时实现纳米化、添加催化剂、形成复合结构的协同改性,更大程度地改善Mg的吸放氢热力学和动力学性能。因此,本文通过磁控溅射的方法制备了一系列Mg-Zr(-O)复合储氢薄膜,在纳米尺度上对其进行成分和结构调控,通过XRD,SEM,TEM,储氢性能测试等方法来综合研究薄膜的微观形貌、结构以及储氢性能之间的关系,对薄膜的储氢机理进行了深入分析。首先,对各靶材的溅射功率进行了探索,得到了相对合适的溅射功率搭配。制备了不同Zr O2含量的Mg/Zr O2八层膜,发现这些薄膜即使在250℃下都难以吸氢,并且Zr O2含量增加后更难氢化。Zr O2的掺杂表现出了阻氢的效果,这与Zr O2的晶体结构和厚度有关。为了降低界面能,在Mg层上溅射的Zr O2倾向于由m-Zr O2转变为与Mg的晶格常数更接近的t-Zr O2。研究表明,t-Zr O2由于易形成可以捕H原子的氧缺位而被认为是一种阻氢材料。另外,Zr O2夹层的存在形式使得Zr O2的分布过于集中,连续致密的Zr O2层对H原子的扩散有一定的阻碍作用,从而产生了阻氢的效果。其次,我们制备了一系列Mg/Zr八层膜,发现它们表现出比纯Mg更好的脱氢性能。其中Mg0.92Zr0.08八层膜具有最快的脱氢速率和最大的脱氢量,并且在167℃下可以开始脱氢,脱氢峰值250℃。在Mg层和Zr层的界面处形成了Mg-Zr异质共格界面,这些Mg-Zr界面的形成提供了Mg/Mg H2的形核位点和H原子的扩散通道,界面处存在的应变能也在一定程度上降低了Mg H2的热力学稳定性。然而,Zr含量越多,Mg/Zr八层膜的脱氢速率越慢,脱氢量越少;脱氢温度逐渐升高,依次为250℃,274℃,308℃。在Mg-Zr界面数量固定的Mg/Zr八层膜中,Zr含量的增加是通过Zr层厚度的增加而实现的,过厚的Zr层以及少量Zr O2的存在对脱氢过程中H原子的扩散有一定的阻碍作用。最后,通过半共溅射的工艺方法制备得到具有特殊Mg-Zr调制结构的Mg-Zr半共溅射薄膜。该调制结构以3~4个Mg(0002)原子层加1~2个Zr(0002)原子层为周期,Mg层和Zr层交错堆垛而成。氢化后,薄膜的择优取向由Mg-Zr(0002)转变为Mg-Zr-H(111),同时整体保持着调制结构。Mg-Zr-H(111)在脱氢后又恢复为Mg-Zr(0002),其中微量H原子的残留导致了Mg-Zr(0002)衍射峰的左移。Mg-Zr半共溅射薄膜中大量Mg-Zr(-H)异质共格界面的存在提供了许多的Mg/Mg H2形核位点和H原子的扩散通道,其中蕴含的微应变也降低了Mg H2的热力学稳定性。这也是Mg-Zr半共溅射薄膜在室温下即可吸氢,并且脱氢性能优异的主要原因。与在150℃下氢化的薄膜相比,在室温下氢化的薄膜可以在更低的温度下脱氢,其中Mg0.83Zr0.17表现出最低的脱氢温度,在80℃就能开始脱氢,164℃时达到脱氢峰值;Mg0.75Zr0.25在86℃下开始脱氢,脱氢峰温度为163℃;Zr含量最低的Mg0.87Zr0.13的脱氢温度最高,起始温度和峰值温度分别为90℃和181℃,但仍远低于纯Mg的脱氢温度。Zr的掺杂对Mg在低温下的脱氢反应有较好的催化作用。在250℃时,Mg-Zr半共溅射薄膜表现出快速的脱氢动力学,并且由于Zr的原子序数较大,薄膜的脱氢量随Zr含量的增加而减少。在这些薄膜中,Mg0.83Zr0.17表现出最佳的综合脱氢性能,它具有比Mg0.87Zr0.13更迅速的脱氢动力学和比Mg0.75Zr0.25更大的脱氢量。