论文部分内容阅读
水中的药物、抗生素、环境干扰素等有机污染物对人类生活的影响日益增加,迫切需要对其进行高效去除。相较于传统的物理法和生物法处理技术,化学法在去除水中有机污染物方面具有显著的优势,这其中,光催化技术在水环境治理方面表现出巨大潜力。但由于TiO2的电子-空穴复合率高、纳米级TiO2粒径过小不易分离等缺陷,导致TiO2光催化法在水处理中的实际应用受到了制约。本论文针对TiO2存在的问题,以工业纳米级TiO2(P25)为基础材料,采用水热法制备了TiO2纳米管材料,并考察了不同改性方式对TiO2材料光催化能力的影响。(1)采用水热合成法制备了具有中空结构的TiO2纳米管材料(TNT)。通过控制反应温度、反应时间、物料比例,制备了形貌可控、性质稳定的TNT材料,并且其相较于P25更易于从水溶液中进行分离。(2)制备了羧甲基-β-环糊精(CM-β-CD)改性的P25材料(CM-β-CD-P25)。在1 h内,CM-β-CD-P25可以将初始浓度为20 mg/L的双酚A(BPA)、双酚S(BPS)、卡马西平(CBZ)、2,4-二氯酚(2,4-DCP)、扑热息痛(4-AP)、苯酚(Phenol)、磺胺(SA),分别去除 91.6%、97.6%、100%、91.0%、99.5%、71.9%以及 97.1%。同时,采用光沉积法制备Au-P25,对同样的有机微污染物进行降解,发现Au-P25的光化学性质明显劣于CM-β-CD-P25。另外,通过自由基捕获、电子顺磁实验等,辅以LC-MS技术,探明CM-β-CD-P25的光催化降解机制为:紫外光激发P25产生电子后,电子攻击水分子生成.OH,并用以攻击污染物。其中,CD一方面加速电子传输速率,另一方面提供了疏水性空腔,通过捕获有机污染物,可以更有效地利用光催化产生的活性氧物质。(3)制备了 CM-β-CD改性的TNT材料(CM-β-CD-TNT)。其在2.5 h内,可以将初始浓度为20 mg/L的双酚A(BPA)、双酚S(BPS)、卡马西平(CBZ)、2,4-二氯酚(2,4-DCP)、扑热息痛(4-AP)、苯酚(Phenol)、磺胺(SA),分别去除 96.0%、99.7%、96.1%、97.5%、97.3%、91.4%以及97.0%。对比TNT改性前后的光电流、材料电阻抗等,发现CM-β-CD对TNT表面电子传输速率具有明显的提升作用。另外,通过自由基捕获、电子顺磁等方法,并辅以低溶解氧条件下、改性TNT材料的自由基捕获实验,提出TNT与P25光催化作用机理的区别:在TNT光氧化系统中,紫外激发TNT产生的电子会优先攻击材料介孔气泡,产生·O2-用以攻击污染物。在TNT体系中,CD不仅加速电子传输速率,捕获有机污染物,还起到了包结疏水性气泡的作用。