【摘 要】
:
建筑隔热涂层的研制与应用是解决建筑节能问题的有效方法。近年来,无机空心球成为了隔热涂层领域的研究焦点。本文从隔热机理出发,设计制备了无机空心球复合材料,研究了反应参数对产物形貌、性能的影响,将其应用于有机-无机隔热涂层,并探究了复合涂层材料的隔热性能和相关光学性能。通过搅拌浸渍法制备了空心玻璃微球/Si-Al气凝胶复合粉体,成功制备了不同配比的以气凝胶包裹空心玻璃微球的复合粉体。研究了复合粉体的隔
论文部分内容阅读
建筑隔热涂层的研制与应用是解决建筑节能问题的有效方法。近年来,无机空心球成为了隔热涂层领域的研究焦点。本文从隔热机理出发,设计制备了无机空心球复合材料,研究了反应参数对产物形貌、性能的影响,将其应用于有机-无机隔热涂层,并探究了复合涂层材料的隔热性能和相关光学性能。通过搅拌浸渍法制备了空心玻璃微球/Si-Al气凝胶复合粉体,成功制备了不同配比的以气凝胶包裹空心玻璃微球的复合粉体。研究了复合粉体的隔热和光反射性能。获得的复合材料粉体太阳光反射率约为60%,导热系数低于0.04W·m-1·K-1,最低可达0.034W·m-1·K-1。采用沉淀法制备空心玻璃微球/TiO2复合材料,成功在空心玻璃微球表面包覆形成了TiO2壳层材料,TiO2壳存在纳米片和纳米颗粒两种形貌。探究了TiO2在空心玻璃微球表面生长机理。测试了复合粉体的光学性能和导热系数,结果表明与原始空心玻璃微球相比,空心玻璃微球/TiO2复合粉体的可见-近红外光反射率提高了20%以上,太阳光反射率可达90%。复合材料粉体导热系数最低可达到0.059 W·m-1·K-1。采用St(?)ber法制备纳米级空心SiO2微球,探究了反应参数对产物形貌与性能的影响。结果表明随着粒径的增大,近红外反射率有所增加,导热系数有所降低。太阳光反射率可达80%以上,导热系数在0.050-0.054 W·m-1·K-1之间。以上述空心SiO2微球为原料,采用溶胶-凝胶法制备SiO2/TiO2复合空心球,并探究了空心球的光反射性能和导热性能。SiO2/TiO2复合空心球的太阳光反射率在可见-近红外波段大于90%,可见光波段大于95%,导热系数与空心SiO2微球相似,在0.050-0.052 W·m-1·K-1之间。以上述三种空心微球复合材料为主要原料,制备了三种有机-无机复合涂层材料,对比探究了三种涂层的太阳光反射性能和隔热性能。在红外光源照射下,以空心玻璃微球/Si-Al气凝胶为填料的涂层,内外表面温差最大(11℃);以SiO2/TiO2复合空心球作为填料制备的涂层获得了最低的内、外表面温度,外表面温度与玻璃基板相比降低了13℃,说明了涂层具有良好的反射隔热性能。
其他文献
金属层状复合材料是利用复合技术使两种或两种以上金属实现冶金结合,从而牢固结合在一起的一种新型复合材料。金属层状复合材料在设计上是异种金属之间呈叠层状分布,并非异种金属均匀的混在一起,这样金属层状复合材料就依然可以保持各自的性能,因此,实现了各组元优点的综合,弥补了各组元的不足,具有单一金属或合金难以企及的优异性能。本文采用累积叠轧工艺制备出两种Nb/Zr多层金属复合板:初始金属Nb、Zr单层厚度为
纳米银焊膏作为一种极具发展前景的新型连接材料,具有优良的导热导电性、高熔点以及高温稳定性等优点,在电子封装领域得到了广泛应用。然而,随着电力电子器件的不断发展,其功率密度不断的增加,焊点尺寸显著的减小,使得在芯片,微焊点和基板间容易产生显著的热—机械应力。因此,准确预测芯片连接层的应力应变响应和疲劳寿命对电力电子器件的发展显得至关重要。目前,针对纳米银的可靠性研究,学者们一般采用基于如Anand模
工欲善其事,必先利其器。纳米复合材料研究的不断深入,对复合材料的相关表征工具以及制备方法提出了越来越高的要求。扫描探针显微镜(SPM)作为纳米复合材料的关键表征工具,其分辨率高度依赖于探针的形貌,不断提高探针的精细度才能更好地表征复合材料的结构与组成。而在纳米复合材料的制备中,希望在已有实验方法的基础上,实现纳米复合材料的一步制备。激光技术,作为一种相对简单、绿色、高效的微加工技术,使复合材料的一
铝硅基复合材料具有良好的比强度、耐磨性及优秀的加工性能,广泛应用于汽车、机械等工业中的摩擦、制动等零部件的加工与制造。这些部件对结构稳定性和振动衰减有着较高的要求,制备具有高阻尼性能的复合材料成为其亟需解决的问题。本文采用热压烧结工艺,通过引入具有较宽负热膨胀温度区间的Y2W3O12、Sc2(WO4)3和Pb Ti O3负热膨胀性夹杂物,成功制备了具有低热膨胀效应、高热稳定性和高致密性的负热膨胀夹
细菌感染引发的疾病和细菌导致的公共环境污染正在威胁着人类的健康。在抗生素治疗细菌感染过程中,滥用抗生素导致了细菌耐药性的产生,而传统的抗菌剂也渐渐不满足使用要求,亟需发展新型的高效的抗菌策略。基于光和纳米材料的光动力法和光热法便是其中两种,光动力法是利用材料在光照下产生的活性氧自由基(ROS),光热法则是借助光热转化导致的高温,通常将两者结合使用。本文以g-C3N4为主体材料,先对其进行修饰,然后
3D打印技术是通过利用三维软件进行建模设计操作,采用材料逐层累加的方法制造实体零件的一种技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。3D打印技术尤其适用于小批量、个性化定制零件的加工生产过程。3D打印概念的提出始于20世纪80年代后期,我国则于90年代初开始研究。经过短短20余年的时间,这-技术已取得了飞速发展,在生物医学工程、微纳制造、航空航天等诸多领域的应
镁锂合金作为一种超轻金属结构材料具有高的比强度、比刚度,卓越的电磁屏蔽特性和优良的阻尼导热特性等性能,在航空、3C、交通运输等领域得到广泛的应用。然而α单相镁锂合金仍属于密排六方结构,存在着强度低、变形性差等缺点,通过加入Al、Zn以及Y等元素,使合金的强度得到提高,同时通过多向锻造这种大塑性变形的方式,使晶粒细化,改善材料的性能。因此,利用合金化以及多向锻造的方式,提高合金塑性,研究其高温超塑性
黄铁矿是地表含量最丰富的金属硫化矿之一。虽然经济价值不高,但广泛存在于闪锌矿、黄铜矿和方铅矿等有价的矿物中,同时也常见于各种贵金属矿中,黄铁矿作为伴生矿物,将影响其他矿物的浸出行为及氧化剂的消耗等。本文探讨了常压浸出条件下反应温度、硫酸浓度和氧化剂对黄铁矿在硫酸体系中的氧化浸出行为,并利用 X 射线衍射(X-ray diffraction,XRD),扫描电镜—能谱(Scanning electro
随着汽车行业的发展,对汽车轻量化和服役安全性能的要求不断提高,先进高强度钢的应用和发展为此提供了重要途径。孪生诱发塑性(Twinning Induced Plasticity,TWIP)钢不仅具有高抗拉强度和高硬化率,同时具有优异的塑性、韧性和成形性能,大幅度减轻车身自重,在薄规格钢板的情况下仍能保持高的能量吸收性能和抗撞击性能,已成为新一代延性高强钢的重要发展方向之一。焊接工艺是汽车制造技术中不
随着我国铅锌工业的快速发展,我国的高品位的铅锌矿资源越来越少,难处理的铅锌混合矿的利用受到越来越多的重视。但是目前的选矿工艺很难将铅锌混合硫化精矿分选成单一的铅精矿和锌精矿,而且目前能直接处理铅锌混合矿的冶炼工艺ISP法(即帝国熔炼法)还存在着能耗高,环境污染大等技术难题。为实现铅锌混合矿的直接清洁冶炼,课题组与中国恩菲工程技术有限公司合作,提出不经分选的铅锌混合矿喷吹氧气熔融脱硫-喷吹碳质还原剂