论文部分内容阅读
汽轮机润滑油系统是石化电力行业中大型汽轮机组中的重要组成部分,但是由于工况的差异、结构的复杂和其他因素的影响,润滑油系统容易出现各种问题,如果单纯地从机械外观等判断是无法找出问题所在的,这样就会给故障诊断带来很大的困难。因此,如果能够利用先进的分析技术,对汽轮机设备及其润滑系统中存在的问题进行有效识别和解决,那么就可以减少不必要的损失;延长设备使用寿命。本文首先阐述了目前主流分析方法的优缺点以及国内外研究进展。在此基础上以汽轮机润滑油系统为研究对象,基于油液监测技术和统计学中灰色预测理论研究汽轮机润滑系统的磨损等问题。具体研究内容包括以下几个方面:1.深入分析了汽轮机润滑油系统的结构和组成;对润滑系统中摩擦副的磨损类型和常见磨粒以及系统中常见的元素及主要磨损器件进行了分类和阐述;对油液监测技术中常用分析方法进行比较并确定本课题所采用分析方法。2.对某电厂200MW汽轮发电机组的润滑油系统在油箱处定期取样,进行实验研究。实验采用理化性能分析、元素光谱分析和铁谱分析等多种分析手段,各项分析结果显示数值正常,该润滑油系统无明显故障。实验表明多种分析技术结合检测能够对润滑油系统实现有效监控。3.对某电厂350MW汽轮发电机组的润滑油系统定期取样并进行实验研究。实验通过理化性能分析、元素光谱分析和铁谱分析等多种分析手段,结合实验结果对设备中的磨损以及故障进行判断,推测润滑系统中的密封件和轴类零件出现故障,经设备检修后发现判断结果与实际检修结果基本一致,证明了多种油液分析技术结合应用的优越性。进一步说明机械设备定期维护的重要性。4.选取壳牌L-TSA 46~#汽轮机油的理化表征数据和元素光谱数据为特征信息。针对元素光谱分析中的铁元素,确定了理化性能中水分含量为最大关联参数,为磨损预测奠定基础。另外,借助于MATLAB系统建立了基于GM(1,1)模型的铁元素含量预测模型,根据后验比和小误差概率对模型进行验证表明该模型预测效果良好,为一级精度。除此以外,采用生成数列残差法对基础预测模型进行优化并在原预测理论中引入修正因子?,建立修正的预测模型。确定最佳修正因子?为0.990,进一步提高了模型的预测精度。