论文部分内容阅读
高重频超短脉冲光纤激光已广泛应用于光频梳、光通信、非线性光学生物成像等方面,例如:高重频超快激光可提高信号速率和成像速度,降低荧光蛋白的光漂白和光损伤,显著提高生物成像质量。尽管通过谐波锁模和腔外重频加倍技术能够产生极高重频(>100 GHz)激光,但与基模锁模实现高重频激光相比,具有强度和相位噪声高的缺点。主动锁模虽然也能获得较高重频,但是需要高频信号发生器或其它谐振腔外附加设备;另外主动锁模技术的脉冲整形能力有限,输出脉宽一般为ps量级。因此,本课题基于自主拉制的增益系数高达5.2 dB/cm的铒镱共掺磷酸盐光纤开展基频重复率大于GHz飞秒光纤激光的产生、放大以及非线性效应研究工作:(1)建立了1.5μm GHz重频飞秒光纤激光器的理论模型,实现了基频重复率从1 GHz到5 GHz的1.5μm飞秒光纤激光输出。提出了一种调谐激光器波长和重复频率的新方法,实现了激光峰值波长和重复频率在一定范围内同步调谐。并且通过谐振腔内复合滤波效应在3.2 GHz重频光纤激光器中发现了单孤子到脉冲束的转换状态。(2)开展了1.5μm GHz重频飞秒光纤激光的放大和脉冲压缩研究,实现了重复频率3.2 GHz、平均功率6.5 W、脉宽104 fs的超短脉冲激光输出,揭示了放大过程中光谱尖峰产生及脉冲压缩的机理,在此基础上,最终获得了重复频率3.2 GHz、平均功率2.5 W、脉冲宽度30 fs的激光输出;将此激光作为泵源抽运高非线性光纤,实现了一个倍频程从1000至2400 nm的超连续谱输出,同时实现了中心波长1.25μm、脉冲宽度92 fs、平均功率0.74 W的切伦科夫辐射(CR)飞秒脉冲输出。(3)利用3.2 GHz重频、6.1W的1.5μm飞秒激光泵浦周期极化铌酸锂(PPLN)晶体实现了中心波长800 nm、平均功率570 mW、脉冲宽度174 fs的二次谐波输出,倍频转化效率为16.5%,光斑轮廓呈现良好的基模分布,数值模拟结果与实验相一致。同时也观察到中心波长536.2 nm三次谐波输出和中心波长397.6 nm的四次谐波输出。