【摘 要】
:
秸秆还田是提高农田土壤有机碳储量,维持土壤质量,提供作物养分的重要农艺措施。根际微域是土壤养分转化的生物化学过程的热点区域,植物碳流影响根际微生物的活性,进而影响秸秆氮的矿化速率,解析根际效应影响秸秆氮矿化的微生物作用机制对于提高后茬作物对秸秆氮的利用率,完善农田土壤氮循环理论有重要意义;另一方面,不同秸秆碳氮比影响土壤有机碳沉积及其稳定性,这一转化过程取决于土壤微生物群落的响应,解析秸秆有机氮矿
【出 处】
:
中国科学院大学(中国科学院东北地理与农业生态研究所)
论文部分内容阅读
秸秆还田是提高农田土壤有机碳储量,维持土壤质量,提供作物养分的重要农艺措施。根际微域是土壤养分转化的生物化学过程的热点区域,植物碳流影响根际微生物的活性,进而影响秸秆氮的矿化速率,解析根际效应影响秸秆氮矿化的微生物作用机制对于提高后茬作物对秸秆氮的利用率,完善农田土壤氮循环理论有重要意义;另一方面,不同秸秆碳氮比影响土壤有机碳沉积及其稳定性,这一转化过程取决于土壤微生物群落的响应,解析秸秆有机氮矿化相关的微生物群落组结构与功能特征可以拓展微生物驱动秸秆碳氮在土壤中周转的认知。本文旨在解析秸秆氮在黑土中的转化过程及其微生物生态特征,为优化农田氮素管理策略,提升黑土有机质含量与生产力提供理论参考。具体研究结果如下:(1)利用15N标记大豆和玉米秸秆,结合根箱系统研究根际秸秆氮矿化及其微生物特征。结果表明,根际秸秆氮矿化速度显著高于非根际土壤,并且大豆秸秆氮的矿化速度快于玉米秸秆。根际氮矿化共生网络关键物种由对照处理的Streptomyces变为大豆秸秆处理的Microlunatus和Novosphingobium,以及玉米秸秆处理的Burkholderia-Caballeronia-Paraburkholderia和Gaiellales。与玉米秸秆处理相比,大豆秸秆氮矿化相关微生物富集效应明显增强,并且氮矿化相关功能基因丰度更高,促进大豆秸秆的矿化。根际可溶性有机碳含量的增加与土壤速效氮含量的降低诱导根际微生物组核心成员变化,促进秸秆氮矿化。(2)通过微宇宙培养试验,结合高通量和宏基因组测序技术,示踪秸秆氮(15N)在黑土碳库中的分配情况,阐释其与微生物组结构与功能的关联关系。结果表明,秸秆添加处理提高了碳降解和氮矿化功能基因的丰度。氮矿化基因与颗粒态有机碳和矿物结合态有机碳库中碳氮累积量以及有机碳中植物来源脂肪族碳关系密切。(3)通过连续三个生长季示踪秸秆氮在作物-土壤-微生物连续体中的动态分布,结合高通量q PCR技术解析微生物功能与秸秆氮矿化的长期效应。结果表明,相比于化肥处理,秸秆添加显著提高大豆共生固氮量,并且大豆秸秆的促进固氮作用高于玉米秸秆。秸秆氮转化过程中,大豆吸收氮是秸秆氮主要去向,三个生长周期后大豆秸秆氮43.3%被大豆吸收,显著高于玉米秸秆处理的37.0%。大豆秸秆矿化速率显著高于玉米秸秆,秸秆氮的长期矿化过程与微生物碳氮代谢功能基因密切相关。(4)针对秸秆还田刺激大豆共生固氮开展根际固氮菌分子生态特征的研究。以nif H基因为靶标基因,对大豆R5期根际土DNA进行高通量测序。结果表明,秸秆还田了提高了根际固氮菌丰度,改变了固氮菌群落结构。与化肥处理相比,玉米秸秆处理增加了Bradyrhizobium和Azohydromonas的相对丰度。nif H在根际的拷贝数与可溶性有机碳和植物共生固氮量密切关联。
其他文献
随着互联网行业及其电商平台的持续快速发展,海量的商品选择带来了严重的信息过载问题。推荐系统能够根据不同的用户喜好,从大量的数据中快速找到用户感兴趣的信息,解决信息过载的问题,因此成为应用计算机科学的重要课题之一。传统面向单一物品的推荐系统通常只关注用户对物品的不同喜好,而忽略物品之间的兼容关系。在更多时候,用户不仅关心他们喜欢的物品,同时还希望得到关于搭配物品的推荐。例如,当用户喜欢某一件上衣时,
随着5G通信系统的高速发展,天线作为无线通信系统的眼睛,其小型化、集成化、高频化、低损耗、低成本的要求越来越迫切,而基于低温共烧陶瓷(LTCC)技术的介质天线是解决上述迫切需求的唯一途径,但超低损耗的低温共烧结微波介质材料、LTCC微带贴片天线理论及设计模型、天线温度稳定性是目前国内外这一领域仍待解决的技术瓶颈问题。本论文主要针对5G中频频谱波段(3.3 GHz-3.6 GHz和4.8 GHz-5
柔性电子技术是一种将电子器件或电路制备于可弯曲/可延性基板上的新兴电子技术,具有可弯曲/可延展、成本低、便携性强和质量轻等优势。随着柔性电子技术的发展,面向可穿戴无线通信系统、共形雷达等应用的柔性微波电子器件也获得了更多关注。与硅、砷化镓、碳纳米管等半导体技术相比,氮化镓高电子迁移率晶体管(Ga N HEMT)具有高功率密度和高效率等优势,近年来成为了柔性微波功率器件的研究热点。由于Ga N外延生
水稻是我国三大粮食作物之一,但其生长过程受到多种病虫害的威胁,其中以稻飞虱最为严重。我国发生的稻飞虱种类主要包括褐飞虱和白背飞虱,是我国的一类农作物病虫害,也是亚洲稻区威胁最大的迁飞性害虫。近20年来,稻飞虱在我国华南西南稻区的发生面积大、暴发频率高,造成了较严重的稻谷产量损失。有效防控稻飞虱的前提是大范围高精度的种群动态监测预报。然而由于稻飞虱种群时空动态的复杂性,人们对大尺度下稻飞虱种群动态认
阵列三维合成孔径雷达(Synthetic Aperture Radar,SAR)具有三维空间分辨能力,被广泛应用于环境监测、安检及雷达散射截面积(Radar Cross Section,RCS)测量等军用和民用领域。然而,基于匹配滤波原理的三维成像结果通常有较高旁瓣且易受背景噪声干扰,难以满足高精度成像的要求。基于稀疏重构原理的三维成像算法虽然可以改善图像质量,但是在用于三维稀疏成像时,所需计算时
分布式雷达系统是一种新体制雷达,其将空间内广泛分布的雷达节点,通过组网技术组合为一个有机整体,并以协同的方式对空间信息进行感知与获取。分布式雷达系统具有空间复用性、多自由度等众多优势,是雷达发展的重要方向。对分布式雷达系统的拓扑构型及资源进行优化可以充分利用其分布式探测的体制优势,使系统检测、定位、跟踪等多方面的性能得以显著提升。因此,拓扑构型及资源优化是分布式雷达的关键技术之一,已成为国内外雷达
东北中高纬度地区处于东亚季风边缘地带,发育了大面积泥炭地,对气候变化响应敏感。在湿地生态系统演化、土壤-生态系统共同进化的过程中,磷元素作为重要的营养元素均参与其中。在泥炭地中,有机磷逐渐累积在植物残体中,长期影响土壤磷库及磷形态分配。东北寒冷气候条件和泥炭地厌氧土壤环境使有机磷能够较为稳定的随泥炭层的形成保存在剖面中。不同演化阶段的泥炭地由于植被、土壤环境等原因导致对磷的积累、利用机制差别较大,
目标检测是计算机视觉领域的共性基础问题,在公共安全、智能制造、智能交通等诸多领域,具有重要的理论意义和应用价值。然而,实际应用场景通常包含目标种类数目繁多、尺度变化大、背景噪声干扰以及模态数据差异等复杂分布特性,导致目标检测面临目标漏检、类别混淆、定位困难等关键问题。研究有效的目标检测模型成为计算机视觉领域和多媒体应用的迫切需求。因此,本文围绕上述问题开展视觉目标检测关键技术研究,以构建高效的目标
太赫兹通信技术作为敲开未来6G高速通信的关键钥匙,已成为通信与信息科学领域需求导向的重大科学问题研究方向之一。太赫兹直接调制技术有望实现高速大容量数据传输以及波束的快速捷变和扫描,对于推动太赫兹通信以及成像等系统实现应用有着重要作用。而大功率容量的太赫兹源、高性能的调制器件等诸多核心器件已成为太赫兹应用领域最核心、最亟待解决的关键技术。此外,面向实际应用的太赫兹系统,对模块的集成小型化提出了新的要
不同规模的节理广泛存在于岩体中,是影响岩体力学性能、控制岩体工程稳定性的主要因素。其还是岩体中地下水渗流的主要通道,在外部荷载作用下会发生法向闭合变形,引起节理的微观变化,进而引起渗流。在天然节理中,岩石节理多以充填岩石节理的形式存在,充填介质对变形有很大的影响,因此研究充填岩石节理法向闭合变形特性有着重要的意义。本文制备了具有第5~10条Barton标准剖面线形貌特征的6种水泥浆类岩石节理试件,