关于一类非光滑害虫治理SI模型的动力学性质

来源 :辽宁师范大学 | 被引量 : 0次 | 上传用户:h8x8x8
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
谱方法是求解微分方程的一种重要数值方法,已被广泛应用于科学和工程问题的数值模拟中,其主要优点是计算的高精度。另一方面,Volterra型积分方程、时滞积分方程以及泛函积分微分
本文应用平均方法得到了如下奇异摄动随机振动方程的有效逼近:εuεtt(t)+uεt(t)=f(uε(t))+εα(W)(t),uε(0)=u0∈Rn,uεt(0)=u1∈Rn.其中0<ε≤1,0≤α≤1/2,f(uε(t))=[βuε
随着云计算的发展,企业或个人把越来越多的数字产品放在“云”中。为了保护云内视频的安全及版权。本文基于现有的研究基础,提出了一个面向云计算的视频分形水印算法。本文算法
2009年,Censor和Segal在对分裂可行性问题进行研究时,将分裂可行性问题与不动点理论大胆结合,首次提出了分裂公共不动点问题(简记为SCFPP).设H1,H2为两个实Hilbert空间,U:H1→H1和T
由于时滞神经网络已被广泛应用于模式识别、图像处理、自动控制、人工智能、联想记忆等领域.又由于时滞神经网络的平衡点的稳定性在这些应用中起了重要作用.因此,研究时滞神经
不动点理论作为泛函分析的重要组成部分,一直以来在很多领域都有着广泛的应用,例如:随机算子理论和随机逼近理论、控制论、优化问题、金融数学、数学规划、微积分方程的解的存
本文讨论了在企业合作之间的非线性双寡头博弈模型,对现有的模型进行了改进,介绍并研究了两个动态调整策略,一个是在重复博弈中实现两企业之间合作的动态调整策略,以及另一个针锋
染色作为图论研究的一个重要分支,包含了非常丰富的内容,如点染色、边染色、面染色、点边全染色、点边面全染色等等.本文研究的是点染色中的一种特殊形式—均匀染色.我们称图G
学位
本文研究了半直线上带转移条件的Sturm-Liouville算子的反问题.对于半直线上的反谱问题,最核心的任务是求解Jost解,进而利用Jost解定义Weyl函数,证明唯一性定理.本文中,我们首先