论文部分内容阅读
在微机电系统(micro-electromechanical system,简称MEMS)中的接触表面镀一层减摩、耐磨和减黏的涂层有利于提高微器件的接触性能和使用寿命。然而由于受到涂层-基体材料的不匹配、涂层-基体界面的结合强度、表面粘着和循环外载等因素的影响,涂层-基体界面常常产生裂纹,并逐渐扩展而导致失效。因此本文主要研究内容包括两个方面,其一是微球轴承中微球与有涂层滚道的接触力学问题研究,其二是MEMS涂层的粘着接触分层问题研究。具体研究内容和结论如下:首先建立了硅微球轴承中微球与镀有类金刚石(diamond-like carbon,简称DLC)涂层的硅基滚道有限元接触模型。分析了微球的材料、尺寸和DLC涂层的设计参数对微球轴承接触性能的影响。结果表明:微球轴承高速运转时,微球密度能显著地影响轴承的接触性能;选择尺寸适中、密度较小、弹性模量较小的微球以及适中的DLC弹性模量有利于提高轴承的接触性能。其次,基于内聚力模型界面建立了微纳尺度下考虑界面分层的刚性球与涂层-基体系统弹塑性接触有限元模型。分析了最大压入深度、内聚强度、内聚能,涂层/基体弹性模量比和多次加载卸载循环对涂层-基体界面分层的影响。结果表明:增大压入深度会导致裂纹尺寸增大,增大内聚强度可以减小裂纹尺寸,增大内聚能可以阻止裂纹扩展,增大涂层弹性模量比会导致裂纹尺寸增大,多次加载卸载循环会加剧已经产生裂纹界面的损伤。最后,基于Lennard-Jones势函数(简称LJ势)建立了微纳尺度下考虑表面粘着的刚性球与涂层-基体系统弹塑性粘着接触有限元模型。分析了最大压入深度、涂层/基体弹性模量比、涂层厚度、基体屈服强度、内聚强度、内聚能和多次加载卸载循环对涂层-基体系统接触性能的影响。在涂层与基体理想结合的情况下,结果表明:pull-off力随刚性球压入深度的增大而增大,增大涂层/基体弹性模量比和涂层厚度能减小pull-off力并增大承载能力,多次加载卸载循环极易引起界面产生较大的塑性累积;在考虑涂层-基体界面分层的情况下,引入了内聚力模型来表征界面。结果表明当界面结合强度不足时,产生pull-off力的时刻涂层-基体界面即出现裂纹,较大的内聚强度和内聚能可以减小裂纹尺寸,增大基体屈服强度使得裂纹尺寸有先减小后增大的趋势,增大弹性模量比导致裂纹尺寸增大。在表面粘着力的作用下,卸载循环使得裂纹尖端产生二次拉伸屈服,加剧已经产生裂纹的界面的损伤。本研究将为MEMS涂层可靠性设计提供理论依据。