【摘 要】
:
充电电池通常由正极,隔膜,负极,电解液等组成,集流体作为正负极活性材料的支撑基底,对整个电池的表现起着极为关键的作用。设计高效的集流体,使其能够在单位重量下负载更多的活性物质,从结构设计方面,提高电池的整体能量密度,具有重要的现实意义。本论文研发了一种模板电镀与刻蚀技术,用于超轻镍集流体的制备。首先通过900℃高温烧结的方法,将离散的电解铜粉烧结形成多孔基体,并以该三维连通多孔铜为模板,电镀薄层金
论文部分内容阅读
充电电池通常由正极,隔膜,负极,电解液等组成,集流体作为正负极活性材料的支撑基底,对整个电池的表现起着极为关键的作用。设计高效的集流体,使其能够在单位重量下负载更多的活性物质,从结构设计方面,提高电池的整体能量密度,具有重要的现实意义。本论文研发了一种模板电镀与刻蚀技术,用于超轻镍集流体的制备。首先通过900℃高温烧结的方法,将离散的电解铜粉烧结形成多孔基体,并以该三维连通多孔铜为模板,电镀薄层金属镍,然后刻蚀铜模板,制备出了一种超轻镍集流体(UNF),其平均孔径在2-10μm。探索了不同实验条件,如电沉积时间、铜模板厚度、退铜溶液比例等因素对超轻镍集流体形貌和结构的影响,得到了优化后的实验条件。同时以此集流体为基础开发了锂氧气电池。锂氧气电池作为下一代储能器件,具有超高的能量密度,其研发前景一直备受关注。然而,放电产物的绝缘属性以及碳材料和粘结剂引起的一系列副反应限制了锂氧气电池的发展。本论文研究发现50 nm左右壁厚的超轻镍集流体的积分电荷是52.9 mC g-1,是单位质量商业泡沫镍的300倍左右。基于单位质量的比表面积,超轻镍集流体具有明显的优势。超轻镍集流体的厚度和通孔的壁厚可以通过铜模板厚度和电镀时间加以调控。超轻镍集流体的厚度能够在10-200μm范围进行调控。因此,我们能够根据电池体系特征来设计具体的集流体,以满足不同条件下的能源存储需要。进一步,我们以超轻镍集流体为基底,通过共形沉积的方法,在其上负载了10 nm左右的钌纳米颗粒,得到钌修饰的超轻镍电极(UNF@Ru)。由于该电极的全金属特性,能够有效地避免由于碳材料引入所产生的副反应。于此同时,钌修饰的超轻镍电极具有连续电子通路,多孔结构和高效的催化活性。与壁厚较大,电极质量较重的商业泡沫镍相比,三维超轻镍电极有306倍的整体电极比容量优势。整体电极提供的能量密度为1316 Whkgel-1,同时该氧气电极能够稳定循环100圈而没有明显的容量衰退,表现出优异的循环稳定性。当电流增加到168mA gel-1时,电极功率密度为317Wkgel-1,同时钌修饰超轻镍电极整体电极仍具有高达711 Wh kgel-1的能量密度,具备良好的高倍率性能。本研究制备出高效的三维集流体具有重要的实际应用价值。模板法被广泛地应用于制备三维多孔结构,采用该方法制备的三维结构能够完成牺牲模板的完全复型,从而实现形貌,大小的精确调控。将模板材料去除后将会进一步形成孔洞,从而提供传质和离子扩散缓通道。三维结构与块状结构相比具有更大的孔隙率和质量比表面积。该结构能够突破二维平面的结构限制,提高电极在单位面积上的负载量和电解液在内部的扩散,在高倍率和长时间的循环下,能够保持优异的性能。
其他文献
环境污染问题日益得到人们的重视,各国政府大力支持纯电动汽车和混合电动汽车的研究与开发。目前电动汽车驱动系统普遍使用的是锂离子电池,但是由于锂离子电池能量密度的限制,难以满足长距离续航的要求。锂氧气电池以O2为正极活性物,理论能量密度达3505 Wh kg-1,媲美于以汽油为燃料的内燃机能量密度,被认为是极具应用前景的下一代储能系统。虽然锂氧气电池近十年来得到了一定的发展,但是仍然存在包括反应过电位
近年来,化学免疫治疗在临床应用中取得了瞩目的成果,越来越多的人认为,为了诱导临床上有效的抗肿瘤反应,需要将免疫疗法与化学疗法相结合。除了联合疗法,有关化疗药物免疫调节性能的研究也引起了人们的重视。以顺铂、卡铂和奥沙利铂为代表的铂类药物是肿瘤治疗中使用最广泛的化学治疗药物,显示出对许多实体瘤的临床疗效,其主要的抗肿瘤机理是通过干扰DNA合成或对DNA产生化学损伤来促使细胞凋亡。近年来多例研究表明铂类
大多数天体物理吸积盘很可能是翘曲的。在X射线双星中,吸积中子星的自旋演化在很大程度上取决于中子星磁场与吸积盘之间的相互作用。本文首先介绍了X射线双星中吸积盘的经典模型。学术界对于由中子星的磁场线通过共面吸积盘施加的力矩已经进行了广泛的研究,但仍然缺乏对翘曲/倾斜吸积盘的相关工作。在本文中,我们建立了一个简化的中子星X射线双星中的翘曲盘模型,其中吸积盘由平直的内盘和外部翘曲部分组成。基于环形磁场分量
随着科技的不断发展,大数据及人工智能技术趋于成熟,这为在线教育的发展注入了新的推动力。在线教育正在逐渐转型成以数据分析、人工智能等现代信息技术为支撑的智慧教育。传统在线教育虽然做到了打破时间和空间的界限,让学生随时随地都可以学习,但也仍然存在一些问题。比如教学方案“千人一面”,缺乏针对性和策略性,课程无法兼顾学生间的个体差异,如基础、理解能力上的差异,老师无法准确了解每个学生的学习进度等。因此,传
抽灌水引发的地面沉降是城市主要地质灾害之一。地面沉降不仅给当地居民日常生活带来严重影响,也制约着当地经济的发展。为了更好地揭示抽灌水作用下地面沉降的机理,本文设计了室内圆柱模型试验,从宏观角度研究了潜水含水层降水及回灌引起黏土层中孔隙水压力和变形的变化规律,并探讨降水和回灌速率对黏性土孔隙水压力和变形的影响。同时设计了室内单向压缩及回弹试验,通过固结压力的增大与减小模拟含水系统中潜水含水层水位的降
第一部分基于CTA的颅内动脉瘤自动化检测和分割的深度学习模型的开发目的:开发基于头颅CTA去骨图像的颅内动脉瘤深度学习算法的自动化检测和分割模型,并在独立的内部数据和外部数据中验证其效能。方法:本研究回顾性收集2009年7月到2017年3月在东部战区总医院进行头颅CTA且随后进行了DSA的患者(数据集1),将其随机划分为训练/调试/测试组。该模型通过训练数据由深度学习框架进行构建,使用调试数据集选
太赫兹波具有穿透力强、对极性分子敏感以及能量低、频带宽等特性,使得太赫兹技术在天体物理、通信、无损检测和生物医学等方面发挥着独特的作用。超材料作为一种具有超常物理性质的人工复合结构,能够呈现局域电场增强效应,对外部环境变化非常敏感,因此,非常适合应用在高灵敏生物传感领域。本论文首先简述了太赫兹的性质及有关应用,然后详细介绍了超材料太赫兹生物传感器的国内外研究进展,并对测量太赫兹波段超材料信息的太赫
建筑风环境作为控制住区环境的重要指标,是影响住区环境舒适度与人体健康的重要因素。在近年来的绿色生态背景下,建筑风环境越来越得到设计者的重视。本文依托于十三五国家重点研发计划重点专项课题《经济发达地区传承中华建筑文脉的绿色建筑体系》下的子课题《经济发达地区传承传统聚落组织理念的高密度建筑集群设计方法研究》,探讨沿海经济发达地区之一长三角地区基于风环境优化的多层居住建筑群体组合设计策略。本文的基本设计
过去关于土体强度的研究主要针对抗压强度和抗剪强度开展,随着工程建设的发展,土体断裂破坏的情况时有所见。为满足工程实践的需要,土体断裂韧度测试以及土体裂缝的数值模拟研究受到越来越多的重视。本文在前人研究的基础上,通过室内试验和数值模拟,研究了土体Ⅰ型断裂的破坏过程,得到如下结论:(1)干密度和含水率对黏土的Ⅰ型断裂韧度有显著影响,在含水率固定时,土体断裂韧度随干密度的增加而近于线性增大;在干密度固定
近年来随着网络普及和通信成本不断降低,视频面试逐渐成为人才招聘面试的重要方式,为招聘企业和求职者提供了极大便利。非实时视频面试主要由面试过程和评审过程组成,主要流程包括招聘人员发布招聘项目,候选人参与面试录制回答视频,招聘人员播放回答视频评价候选人表现。其中,面试管理子系统用于帮助招聘人员发布、管理和分享招聘项目,是非实时视频面试系统的必要组成部分。针对招聘人员在发布招聘、邀请面试等方面的面试管理