【摘 要】
:
分数阶积分微分方程中的分数阶算子是非局部的,核弱奇异,从而使得此类方程比整数阶对应的方程更加复杂.近年来,虽然已有许多数值方法推广到分数阶积分微分方程中,但大多数都
论文部分内容阅读
分数阶积分微分方程中的分数阶算子是非局部的,核弱奇异,从而使得此类方程比整数阶对应的方程更加复杂.近年来,虽然已有许多数值方法推广到分数阶积分微分方程中,但大多数都忽略了非光滑解的情况.由于分数阶积分微分方程中的分数阶算子中的核弱奇异,使得方程的解通常会表现出弱奇异性,解的正则性不高,从而数值方法的数值解往往达不到最优的收敛效果.基于上述问题,本文引入平滑变换,使解具有很好的正则性,并选用具有全局性和高精度的谱配置法对变换后的方程进行离散求解.首先根据分数阶积分微分的定义和性质,将原方程改写成等价的带弱奇异核的第二类Volterra积分方程.其次利用平滑变换,使解具有很好的正则性.其中,通过调整变换中的变量,可以使得收敛速度达到最大化.然后选用Jacobi谱配置法对变换后的方程进行离散数值求解,并严格推导出在L∞和Lwα,β2范数意义下,该方法的收敛性理论分析.最后,给出了具体的数值算例,证明精确解与数值解的误差呈指数衰减,进而验证Jacobi谱配置法求解具有非光滑解的分数阶积分微分方程的可行性及有效性.
其他文献
抗冲击性能是混凝土材料在动力荷载作用下的重要性能指标之一。已有研究表明:在混凝土中掺入一定体积的钢纤维可增强混凝土的抗冲击性能;钢纤维与合成纤维混杂增强混凝土具有优良的静态力学性能,而对于合成纤维与钢纤维混杂增强混凝土冲击性能的研究尚不多见,已有研究成果中因不同研究人员所用试验方法和标准不统一,使得冲击性能的试验结果离散性较大。因此,改进冲击试验装置降低试验结果的离散性、研究钢纤维和合成纤维混杂增
以燃烧技术为基础的常规能源因肆意开发和不合理使用,带来的能源紧缺和生态破坏等问题日渐严重,因此,风能、太阳能和潮汐能等可再生的绿色新能源应运而生。针对这些新能源间歇性的缺点,锂离子电池(LIBs)因为其优异的能量储存和转换性能备受青睐。随着科技的进步,尤其是混合动力汽车等新型产业的不断发展,对LIBs的性能提出了更高要求。目前商业化LIBs的负极材料是石墨,虽然其具有工作电压低、结构稳定的特点,但
电火花在加工高强度高硬度材料时,有着较大的加工优势,但存在着加工效率低下的缺点。高效电火花加工技术使其加工效率提高了数百倍,甚至在一些材料的加工效率上超过了机械加
热等离子体裂解煤、煤焦油和生物质等制乙炔是绿色高效的先进技术。该方法可将复杂的原料一步转化为乙炔等有机化工基础原料。热等离子体技术的规模化研究证明了其工业化的可
水分是影响植物生命活动的基本因子,叶片含水量是表征植株水分状况的重要指标,快速、准确地监测或诊断叶片含水量,从而及时调整水分管理措施,对保障核桃树的正常生长、发育和
多环芳烃(PAHs)由两个或多个苯环以线性成簇排列或角度键合组成。它是环境中普遍存在的污染物,同时也会在烹饪和加工过程中积累到食物中,对人类生命活动有很大影响。因此,研究痕量水平存在的PAHs十分重要。埃洛石纳米管(HNTs)是唯一以纳米管形式存在的粘土矿物,其内外表面具有不同的化学性质,这使其易于改性为功能材料。本文基于HNTs制备了三种新型的磁性吸附剂材料,建立了磁固相萃取法(MSPE)结合气
涡旋在各种各样的物理系统中起着重要的作用,从普通的流体到凝聚态物质,再到早期的宇宙,这些变化反映在描述涡旋形成、结构和动力学的数学模型中.而非线性Ginzburg-Landau-Schrodinger方程(GLSE)蕴含了丰富的量子涡旋的动力学行为.本文主要研究如下非线性GLSE的约化涡旋动力系统:#12其中zj=(xj,yj)T∈R2表示第j个涡旋中心所在坐标,mj=+1或-1表示第j个涡旋的涡
桥梁在服役期间不断承受移动载荷作用,准确评估桥梁结构的载荷承受状况是结构安全服役的有效保障。移动载荷识别技术作为桥梁健康监测技术的重要分支,能帮助决策者清晰了解桥梁结构的真实受力状况,可为桥梁结构的维护和管理决策提供重要的参考。以往研究大多针对确定参数结构进行移动载荷识别分析,对结构参数中的不确定因素考虑不足,但在桥梁建设过程中,制造及安装误差难以避免,结构参数极易包含一定程度的不确定性,结合参数
二噁英及其类似物是典型持久性有机污染物,具有高毒性、亲脂性、生物蓄积性等,并能通过食物链进入人体。膳食摄入是人类摄入二噁英类化合物的主要途径,尤其是动物源性食品,例如:鱼类、肉类、蛋类、乳制品类等,长期暴露可导致严重健康威胁。因此,食品中二噁英类化合物污染状况以及由此导致的人体暴露受到全球的重点关注。因此本论文主要围绕动物源性食品中二噁英类化合物进行了如下的工作:(1)典型地区猪油中二噁英及其类似
目的神经元的轴突再生取决于自身的再生能力及其外部环境因素。神经损伤之后,轴突再生受到各种信号传导通路的严密调节。端粒酶逆转录酶(telomerase reverse transcriptase,T