论文部分内容阅读
因感染结核分枝杆菌引起的结核病是一种严重威胁人类健康的慢性传染病,已成为全世界广泛关注的公共卫生问题。在18世纪欧洲工业革命时期,发生结核病的大流行,时至今日,结核病仍然是全球面临的的最重大公共卫生挑战之一。目前,全球每年结核病的新增病例约130万,每15秒出现一例死亡病例。在我国,全国每年结核病新增病例13万,结核病发病人数居全球第三位。更为严峻的是,近年来耐药结核病疫情问题日渐突出。我国耐药结核病人数已经居全球第二位,每年新增病例约12万人。对结核分枝杆菌的快速检测,是结核病防治和治疗的重要保障,是控制其传播的关键步骤之一。适配体(aptamer)是通过体外SELEX技术筛选得到的单链DNA或RNA,对靶标具有高特异性和高亲和力识别和结合能力,易于化学合成,易修饰,稳定性好,而且在室温下,以及变性和复性后可重复使用,这些优势使其作为分子器件、亲和分离材料和治疗剂等被广泛用于生物传感器。鉴于此,本课题首先筛选结核分枝杆菌菌株H37Rv的适配体,将其作为分子探针修饰在多通道串联式压电石英晶体(MSPQC)传感器的电极上,结合碳纳米管或金纳米粒子,构建新型传感器用于结核分枝杆菌的直接检测,其检测快速、灵敏,无需进行额外的分离和培养。MSPQC传感器能灵敏检测电参数的变化,是一种灵敏、快速、操作简单、低成本的检测技术,被广泛应用于微生物的分析研究中。本课题组设计了一系列基于MSPQC系统的传感器用于检测结核分枝杆菌,这些方法都需要经过培养,而结核分枝杆菌的生长速度又很缓慢,因此其检测时间无法满足对结核杆菌早期检测的要求。在课题组前期研究的基础上,本课题致力于开发灵敏、快速、准确、造价低廉便于推广的新型MSPQC传感器的研制。拟筛选结核分枝杆菌的适配体,以此作为检测探针,实现无需培养、快速特异性检测的目的。鉴于此,开展了以下研究工作:(1)利用cell-SELEX技术建立结核分枝杆菌适配体的筛选策略。以结核分枝杆菌为筛选靶标,设计全长为78 nt的单链DNA文库,为保证足够的库容量,将随机序列设计在中间,此单链DNA文库的库容量为435。采用对称PCR制备双链DNA,再以此为模板,进行不对称PCR,并用电泳胶进行产物单链DNA的纯化,从而保证亚文库的质量和数量。为提高筛选的效率和质量,从第4轮开始用金黄色葡萄球菌、耻垢结核分枝杆菌、鼠伤寒沙门氏菌、大肠杆菌作为靶标进行反筛,减少筛选轮次,提高适配体和结核分枝杆菌之间的结合率。同时,为了提高筛选的效果,对亚文库和结核分枝杆菌的投入量进行逐轮递减,并对PCR条件进行了优化,用荧光分光光度法和流式细胞技术监测了适配体的富集程度。(2)结核分枝杆菌适配体的克隆、测序及鉴定分析。对第14轮筛选的产物进行克隆和测序,通过蓝白斑实验,挑取40个克隆子,其中有效适配体序列有39条,对这些有效序列的一级结构序列的进行对比分析,获得它们的同源性信息。而这些序列的二级结构则通过软件模拟,利用荧光分析法测定结构最稳定、自由能最小的4条代表序列与结核分枝杆菌间的结合力,结果显示适配体Apt1与结核分枝杆菌H37R有最高亲和力,Kd值为37?4 nmol/L。并将适配体Apt1进行FITC荧光修饰,对靶标菌进行定量及特异性考察。结果表明,适配体Apt1可以高特异性识别结核分枝杆菌,对基因高度同源、细胞结构相似的耻垢分枝杆菌没有交叉结合。对结核分枝杆菌的定量分析结果表明,在102-107 cfu/mL范围内,频移值与结核分枝杆菌浓度的对数具有良好的线性关系,可以利用频移值对结核分枝杆菌进行定量测定。(3)基于适配体Apt1对结核分枝杆菌H37Rv的特异性识别,利用导电性能良好的单壁碳纳米管(SWCNT),联合高灵敏度的MSPQC构建了一种SWCNT/H37Rv aptamer/Au-IDE MSPQC传感器,用于检测结核分枝杆菌。检测原理为,修饰在电极上的适配体Apt1通过π-π堆积与SWCNT结合被吸附到电极表面,当H37Rv存在时,由于适配体Apt1与H37Rv特异结合,导致SWCNT从电极上脱落,从而引起电信号发生变化,该变化由MSPQC灵敏响应。该传感器的检测限为100 cfu/mL,检测时间为70 min,为验证所提出方法的准确性,用该传感器检测45个临床样品中的H37Rv时,检测结果与培养法检测结果无明显差异。表明提出的传感器具有高特异性、无需培养分离、快速灵敏、准确等优点。(4)构建了DNA-AuNPs/MSPQC传感器,通过将筛选的结核分枝杆菌H37Rv适配体作为传感器的检测探针,设计了能与适配体末端互补的DNA序列作为捕获探针,借助AuNPs易于修饰、生物相容性好、具有良好导电性的特点,实现了结核分枝杆菌的快速检测。首先,通过适配体Apt1识别H37Rv,形成H37Rv-适配体复合物,再通过适配体末端与电极上的捕获探针杂交结合,引起电极表面阻抗值发生变化,该变化由MSPQC灵敏响应。利用该传感器,在65 min内完成了对H37Rv的检测,检测下限为100 cfu/mL。其检测灵敏、快速,无需任何培养和标记。(5)构建以H37Rv适配体为识别探针,AuNPs-DNA介导的H37Rv aptamer/AuNPs-DNA/MSPQC传感器。设计了三种AuNPs修饰的寡核苷酸片段AuNPs-DNA。这些寡核苷酸分别含有12、12和13个碱基,与37 nt H37Rv适配体杂交。通过Au-S键将H37Rv适配体固定在Au叉指电极表面。然后通过与三个设计的AuNPs-DNA探针杂交,在电极表面形成一个导电层。当H37Rv存在时,它与适配体特异结合,导致AuNPs-DNA从电极上脱离。因此,导电层被适配体和细菌组成的非导电复合物所取代。这些变化由MSPQC系统监测。构建的传感器在2 h内实现了检测限低至100 cfu/mL的检测。