过渡金属修饰有机半导体(C3N4)材料的设计及光催化载流子分离效率研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:pqx98
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着社会的不断发展,能源和环境问题亟待改善。在众多的研究中,光催化技术是一种在能源和环境领域中有着重要应用前景的技术。光催化分解水制氢为缓解21世纪能源和环境问题提供了切实可行的新方案。氮化碳(C3N4)作为一种传统的有机半导体光催化剂一直备受科学家的青睐,这得益于C3N4具有较好的物理和化学稳定性、制造成本低等优点。但是,C3N4同样存在光生载流子复合较快的问题,这是C3N4本身最为“致命”的缺陷。研究者们发现光生载流子复合较快这一现象很大程度是受自身光生电子转移能力的影响。本文将C3N4作为主要光催化材料,通过可控的复合手段制备具有高效载流子分离效率的复合光催化剂。本文主要通过过渡金属修饰、构筑异质结这两个手段改善C3N4的光催化载流子分离效率。负载过渡金属:(1)Pt单原子和Pt团簇共同修饰C3N4。为了降低光催化剂的成本,以氯铂酸为Pt来源通过简单的油浴的方法将Pt负载到C3N4上面。借助高角度环形暗场扫描透射电镜(HAADF-STEM),证实了C3N4表面存在Pt单原子和团簇。利用高分辨X射线光电子能谱(XPS)分析了C3N4表面的Pt的化学态。光催化产氢实验结果证明Pt/C3N4最优的样品产氢性能(28 mmol·g-1·h-1)约为C3N4光沉积Pt产氢性能(9.8 mmol·g-1·h-1)的2.8倍,归因于C3N4表面大量的Pt单原子和团簇作为催化反应位点,源源不断地捕获来自C3N4的光生电子,提高了光生载流子的分离效率。(2)Co单原子修饰C3N4。基于上述研究,为了进一步降低成本,通过超分子链接制备了含有Co原子的C3N4前驱体。之后在N2中煅烧得到Co/HCNS复合光催化剂。同步辐射表征和理论计算表明Co原子位于C3N4层间,并且与上下层的C3N4之间形成了化学键,在电子传输中充当了桥梁的作用,加快了C3N4内部的光生载流子分离效率。在同步产氢和苯甲醇氧化实验中Co/HCNS表现出优异的性能,氢气的产率为8.2 mmol·g-1·h-1,苯甲醛的产率为11 mmol·g-1·h-1,约为C3N4同步实验下性能的4倍。此外,对Cu、Co、Fe、Ni原子进行了测试,发现Co原子修饰时性能最好。基于上述对过渡金属修饰C3N4的研究,本研究利用过渡金属Pt修饰C3N4/Mo O2/C S型异质结复合材料。通过X射线光电子能谱(XPS)和功函数,证明了C3N4和Mo O2/C之间形成了内建电场(IEF),方向为C3N4指向Mo O2/C。结合能带分析,C3N4和Mo O2/C之间形成了S型异质结。聚集在C3N4导带上的电子最后会被光沉积的Pt捕获,将H+还原成H2,最优的C3N4/Mo O2/C样品产氢性能为16.2 mmol·g-1·h-1大约为C3N4的1.8倍。利用负载过渡金属和构筑异质结这两种方法,提高了C3N4的光生载流子的分离效率。
其他文献
农业是我国国民经济的基础,是保障经济发展、社会稳定的重要产业。随着智能化技术的不断发展,提高农业机械化与智能化水平成为重要的研究议题。然而,现有的采摘机器人在采摘效率、灵活性和通用性等方面尚无法满足市场需求。部分采摘机器人虽然采用了软体机械手作为末端执行器,但是其灵巧度与人手相比还有很大的差距。针对目前采摘机器人所面临的问题,为了提高末端执行器的灵巧度与通用度,以兼容不同尺寸、形状的物体的抓取,本
学位
晶体管技术越来越接近摩尔定律的极限,目前由大量硬件块组成的可编程逻辑器件(PLD),其结构复杂、能耗巨大。因此,设计单个电子元件具有可重构化逻辑编程以及神经形态计算能力,成为了延续后摩尔定律时代和发展人工智能的有力补充点。在各种神经形态设备中,电解质调控的双电层晶体管独特的界面耦合和电化学掺杂行为与生物突触活动高度吻合。因此,基于双电层薄膜晶体管构建神经形态工程,实现各种复杂的神经网络计算功能,逐
学位
Ni-W基三元合金具有熔点高、韧性强、硬度大、热稳定性好、耐蚀耐磨以及良好的电催化和磁性等优异性能,常用于航天航空、汽车制造、电子通讯等领域,是当前替代六价铬电镀的最佳镀层。但当下对二元W合金研究较多,关于Ni-W基三元合金的研究较少,特别是Ni-Co-W合金的制备。传统电镀Ni-Co-W合金一方面存在低W含量下耐蚀耐磨性能较差,高W含量下镀层残余拉应力大和易开裂等问题;另一方面,也存在传统电沉积
学位
激光制孔是现代微小孔加工领域的关键技术之一,目前已经有较多的水辅助方法被用来解决长脉冲激光制孔过程中严重的热效应造成的表面飞溅、微裂纹、重铸层等缺陷;超短脉冲激光制孔过程中,等离子体屏蔽,材料去除效率低,微孔加工深度有限等问题。但是,不同水辅助方法效果之间的对比试验较少。因此,本文对水辅助方法进行细分,研究水膜/水下/水基三种水辅助方法对GH4220镍基高温合金激光环切制孔的影响,从微孔的几何形貌
学位
机关党建是加强党的建设的重要环节。党的十八大至十九大期间机关党建研究侧重机关党建科学化水平、创新型格局,以及推动机关党建工作的路径、理论建构逻辑及制度优化方面的研究。党的十九大以来机关党建研究进一步突出了机关党建的政治属性和政治功能,丰富了习近平总书记关于机关党建重要论述的研究。这一时期的研究更加聚焦机关党建重点难点热点问题,从制度建设、光辉历程和经验总结的角度进行了多维度的研究和阐释。加强机关党
期刊
滚动轴承作为机械设备的重要组成部分,制定强有效的运维策略能够保证其安全运行,避免由滚动轴承故障引发的重大灾难,如环境污染、人员伤亡、经济损失等。滚动轴承健康运维的关键在于运行状态的实时监测与故障的有效分类,同时,随着“大数据”时代的到来,通过传感技术所采集的数据成为分析滚动轴承“症结”所在的凭据。因此,本文针对滚动轴承运维中的关键步骤——监测与诊断所涉及的三个方面:故障特征提取、状态监测与故障诊断
学位
电子拓扑态是一种新的物质态,其具有新颖的拓扑特性,并很快被引入到光学领域。光子晶体作为一种人工微结构,具有能带结构可人工设计的特性。基于电子拓扑态的相关原理,通过在设计光子晶体结构时引入相关对称性,研究人员很快实现了光学拓扑态,并展开了光子晶体拓扑态的研究,这为光场调控提供了很多新颖的机制,如背向散射抑制的单向传输、赝自旋锁定的波矢方向选择、高维度的光场调控等。本文基于拓扑能带理论和拓扑极化理论,
学位
作为概率论研究的重要问题之一,强极限定理多年来一直受到广大学者的关注,引发诸多思考与讨论。随机环境下马氏链是考虑经典马氏链在随机因素影响下的情况,而双无限随机环境是对单无限随机环境的进一步推广。近年来,关于经典马氏链以及随机环境下马氏链的强极限定理的研究成果颇丰,内容主要涉及中心极限定理、强大数定律、渐近均分性等极限理论。与经典马氏链以及单无限随机环境下的马氏链相比,对于双无限随机环境下马氏链的强
学位
软体机器人多以能大应变的柔软弹性材料为本体结构设计而成,具有无限自由度和连续变形能力,适用于非结构化环境中工作。由于具有类似生物组织“软而湿”特点的其中,聚N-异丙基丙烯酰胺(PNIPAm)温敏水凝胶由于在体积相变温度32℃附近发生明显且可逆的体积溶胀-收缩行为,在仿生软体机器人、靶向载药、柔性传感器等方面具备巨大的研究潜力,然而其响应速度慢以及机械强度不足都限制了进一步实际应用。针对上述问题,本
学位
对单晶硅进行微加工得到的多孔硅是一种用途广泛的新型材料,它不仅具有优异的半导体特性,还因其较大的比表面积、优良的生物传感以及较高的深宽比等优异的性能在光电传感器、陀螺仪等硅微结构光电机电系统和生物医疗医学方面等领域占有重要地位。多孔硅规则阵列结构因其优异的各向异性和统一的规律一致性优异于普通随机多孔硅。本文对P型多孔硅规则阵列结构的制备、孔生长模型,快速制备以及各实验参数对P型多孔硅规则阵列结构的
学位