光空间脉冲位置幅度调制技术方法研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:star225
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
与传统电波通信方式相比,无线光通信具有带宽高、安全保密性好以及信息容量大等优势。随着未来无线光通信朝着高速高效率的方向发展,无线光通信技术正面临着巨大的革新。光信号在大气传输过程中,吸收、散射、背景光等恶劣天气会影响光束的传播质量,进而降低通信性能。因此,采用性能优越的调制、编码及技术融合手段,充分利用通信频谱资源实现高频谱效率及低误码率的需求成为了关键。结合脉冲幅度调制的高频谱特性以及脉冲位置调制的高能量利用率的特性,本文在传统调制方式基础上进行优化,提出一种同时采用脉冲幅度调制与脉冲位置调制的联合调制方法,并对信号调制编码与技术实现展开研究。与传统单调制方式相比,联合调制技术通过两种调制方式协调配合,利用脉冲的幅度以及所在的时隙位置来传递信息,不仅在功耗方面能够降低光设备平均发射功率,同时也能有效地利用频谱资源,进一步提升传输性能。论文完成了空间调制与分层映射关系的理论分析,进行了不同调制方式的性能数值仿真,设计了一套基于激光二极管与光电探测组成的阵列光空间联合调制系统,构建以FPGA为核心的硬件系统进行实验测试。实验数据表明,在一定距离范围的大气环境下,能有效实现空域映射(SM)方式的数据编码联合调制与分层传输,传输速率能达到5Mb/s,误码率优于10-4,实验结果为后续应用研究提供一种新的技术途径。
其他文献
随着人们生活水准的升级,小型乘用汽车作为一般商品逐步进入到各家各户中,乘用车安全日益引起消费者的重视。毫米波雷达在日常使用的主动安全装置占有重要地位,广泛应用于前向防撞、变道辅助、盲点检测等场景。针对车载毫米波雷达不同的应用对天线有不同的设计要求,本文分别设计了两款应用于前向防撞的高增益阵列天线和一款应用在乘用车防撞角雷达的宽波束阵列天线。具体的研究内容如下:1、77GHz前向汽车远距离防撞雷达S
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)可以在全天候、全天时进行工作,完成对非合作目标的高分辨成像,是重要的雷达体制之一。频率分集ISAR作为一种新型的逆合成孔径雷达可以通过在每个观测时刻发射不同频偏的单频信号来获取目标的散射信息,可以克服传统ISAR宽带收发机复杂的问题。由于频率分集ISAR在每个观测时间内发射单频信号无法形成有效的距离像,相对
随着互联网的快速发展,信息过载现象日益严重,用户如何快速地找到需要的信息变得越来越困难。推荐系统能够精准的将信息推荐给用户,是解决上述问题的重要工具。神经网络具有强大的特征提取和特征建模能力,被广泛应用在推荐系统中,然而,神经网络学习的特征和传统的算法融合时,统一权值融合用户或项目的特征,会导致模型的性能受到限制。针对上述问题,本文分别对自编码建模的项目特征和深度神经网络建模的高阶特征进行元素级别
随着网络覆盖全球化的推进,水下平台与空中平台的跨介质激光通信成为近几年的热点研究领域之一。在该类通信中,信道由海水、海/气界面及大气组成,因其成分复杂,对光束传播的影响因素众多,到目前为止,尚无公认的跨介质信道模型。因此,保障跨介质激光通信的稳定性、可靠性仍然是一个极具挑战性的课题。现有的激光跨介质通信研究存在以下问题:(1)在垂直链路水下光通信中将海水设定为均匀介质;(2)在大气信道研究中,尚无
基于能量检测的非相干MIMO空分复用技术不需要精确实时的信道状态信息解调信号,且具有抗随机相位干扰、对多普勒频偏不敏感的特性,成为高速移动环境下实现大容量、高可靠通信的关键技术之一。多用户MIMO技术可以采用空分多址的方式在相同的时频资源上与多个用户进行通信,成倍地提高通信系统的容量和频谱利用率。现有的关于非相干多用户多天线检测技术的研究主要针对多用户SIMO上行系统,即使少部分文献研究了非相干多
交通标志在引导安全行驶、缓解城市拥堵、减少交通事故等方面都发挥着至关重要的作用。在智能驾驶系统中,交通标志的检测与识别一直以来都是研究的重点和难点。随着深度学习技术的日渐成熟,卷积神经网络越来越多的应用于交通标志的检测领域,且在环境良好的交通标志数据集中取得了不错的成果。但在真实的道路场景中,交通标志易受到复杂环境的影响,如天气、遮挡、光照等。此外智能车捕获的往往是全景图像,交通标志在全景图像中占
由于互联网行业的快速与蓬勃发展,已经出现了各种各样需求不一的业务,如车联网行业、远程医疗、智能家居、5G工业等,不一样的业务对带宽、时延、存储等需求也有所不同。僵化的传统底层网络已经不能灵活的满足这些新兴网络业务的需求,因此网络切片技术应运而生。凭借软件定义网络(SDN)与网络功能虚拟化(NFV)技术,可以快速部署和集中管理网络切片,从而简化管理、提高资源利用率和降低成本。本文首先研究了基于SDN
通信系统带宽的增加对其构件的性能提出了巨大的需求。模数转换(ADC)器芯片作为通信设备中的关键构件,近年来随着5G网络的逐渐普及,需要更加高速、低功耗、高精度的ADC芯片。因此,不管在工业界还是学术领域对高速ADC的研究都是一个吸引力较强的课题。而得益于半导体工艺的进步,器件尺寸、速度等性能的提升,使得具有功耗低、结构简单及占用面积小等优点的逐次逼近型(SAR)ADC脱颖而出,可以满足高速低功耗A
近年来,语义解析是计算机视觉研究领域的热门方向。通过卷积神经网络学习视觉信息的深层表达,该方法已经趋于成熟,但是视觉信息的高维特征向量表达与人类对视觉信息的理解存在差异。因此,对视觉信息进行语义解析能提高人机交互的效率,提升机器人、视觉检索等系统的可解释性。对视觉信息的语义解析,离不开视觉特征的学习与优化。本文针对困难样本在特征学习中难以收敛的问题,研究了基于神经网络的困难样本学习算法。针对视频信
金属薄板件作为承载结构被广泛应用于工程领域,当薄板结构遭受外物冲击、碰撞产生损伤时将会严重威胁到制件的表面质量,容易引发灾难性事故。目前,对金属薄板结构的健康状态监测方法有很多,其中压电监测技术被普遍运用。本文在研究结构健康监测的基础上,通过理论分析、数据仿真、实验验证等途径深入研究了金属薄板件上发生冲击损伤时的压电信号特征、传播特性以及信号的降噪、时延估计和定位算法等关键技术,完成了金属薄板件上