论文部分内容阅读
随着城市化的快速发展,由此引发的城镇建设用地不断增加,同时耕地、林地被占用等一系列地表快速变化等问题,引起各级土地管理部门的高度关注。然而,如何快速、及时、准确地发现城市土地利用变化情况和信息是关键问题,遥感变化检测技术为解决这一问题提供了科学方法。高分影像为准确提取地表变化信息提供了丰富的数据基础,同时,由于高分影像的多分辨率为经典变化检测方法带来了新的困难与问题。高分影像在多分辨率、多尺度环境下的同谱异物与异物同谱问题、纹理结构的尺度问题、类内方差减小同时类间方差增大问题等等,都是高分影像变化检测的困难问题。为此,本文紧紧围绕着地表变化检测中突出的问题,从高分影像的脊波变换特征、融合特征以及卷积神经网络等方面进行多尺度变化检测算法研究,旨在综合利用高分影像多分辨率信息,减弱预处理过程及检测过程中的误差影响,从而增强地表变化检测结果的准确性与合理性,构建新的变化检测方法,为变化检测技术应用及生产实践提供理论支持。主要研究工作及创新点如下:创新性的提出了高分影像分类与变化检测处理技术:基于脊波、卷积神经网络的高分影像分类算法和基于光谱特征级融合及多尺度分割投票决策的变化检测算法。基于脊波、卷积神经网络的分类算法是在脊波理论及卷积神经网络的理论基础上,将脊波提取的“低水平”的简单特征与神经网络提取的“高水平”特征相融合。由于在提取特征的过程中,使用脊波提取的“低水平”特征减少了融合特征对训练集的依赖性,使得融合特征更加独立;而卷积神经网络在此过程中又抑制了噪声的产生及提高分类区域的一致性,最终提高了影像的分类精度。基于光谱特征级融合及多尺度分割投票决策的变化检测方法则是提出了一种提高变化检测精度的方法框架。此方法由影像融合算法开始,分别使用不同的算法提取影像的多尺度特征,然后通过这些提取的特征融合为特征层,然后通过曼哈顿距离量测不同时相间融合特征向量之间的变化幅度,并以Otsu法进行分割后得到二值变化检测图。随后采用“少数服从多数”的投票策略,对目标内的每个像素进行标记,并最终形成变化检测图。从最终的实验结果来看,将基于脊波、卷积神经网络的高分影像分类算法与目前最先进的五种算法相比较,其结果具有一定优势。基于光谱特征级融合及多尺度分割投票决策的变化检测方法在三组数据中进行实验,实验结果表明,与单独使用原始光谱特征和其他先进的变化检测方法相比,该方法获得了更好的性能。最后,将本文算法应用于土地调查的实际数据中,取得了较好的效果,充分表明本文算法研究的有效性和对实际工作的适应性。