边值方法求解具有脉冲状空间对照结构的奇异摄动问题

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:HYB1976
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过采用边值方法求解具有脉冲状空间对照结构的奇异摄动边值问题。对于内部层问题,首先,从内部层转移点t*处将原问题划分为左右两个问题。然后,通过边值方法可以得到分别相应于左右问题的非奇异摄动方程。对于边界层问题,可以直接通过边值方法得到相应的非奇异摄动方程。   全文共分4章。第一章为引言部分,简述了具有脉冲状空间对照结构的奇异摄动问题研究的背景、意义及本文研究的主要内容。第二章研究了具有脉冲状空间对照结构的二阶半线性Dirichlet问题,用边值方法求解该问题等,第三章举出一些数值例子并通过数值试验验证了边值方法的有效性。第四章为文章的结论。
其他文献
图像融合(Image fusion)是一门综合了传感器、图像处理和计算机等技术的现代高新技术。遥感图像融合作为一个重要分支,受到越来越多的关注。近年来,多光谱图像(MS)与全色图像(PAN)的融合技术在军事和民用领域中都扮演着一个重要角色。MS图像的光谱分辨率高,而PAN图像的空间分辨率高,在实际应用中,总希望得到空间和光谱分辨率都较高的图像。因此,MS和PAN图像融合技术应运而生。已有研究表明,
众所周知,偏差理论是概率论中研究的热点问题之一,偏差概率可分为大偏差概率、中偏差概率和小偏差概率三个部分.长期以来众多学者把注意力主要集中在对全局偏差的研究上,并取得
局部上同调理论是研究交换代数和代数几何的一个有效工具,很多数学家致力于此方向的研究,并且由于不同的需要对它进行了发展.1974年,J.Herzog提出了广义局部上同调模的概念,2009