【摘 要】
:
图案化超浸润表面以拉普拉斯力为主要驱动力,可实现液体的快速自发定向运输,在流体运输、雾气收集等领域有着广阔的应用前景。在运输过程中,图案化超浸润表面的微观形貌、图案形状等参数对表面润湿性、液滴运动特性有重要影响,从而影响液体运输、雾气收集等应用过程,但相关研究尚未见报道。针对以上问题,论文首先采用纳秒激光刻蚀及低表面能修饰技术制备了单楔形超浸润表面,通过改变激光加工参数调控微观形貌,探究了表面微观
论文部分内容阅读
图案化超浸润表面以拉普拉斯力为主要驱动力,可实现液体的快速自发定向运输,在流体运输、雾气收集等领域有着广阔的应用前景。在运输过程中,图案化超浸润表面的微观形貌、图案形状等参数对表面润湿性、液滴运动特性有重要影响,从而影响液体运输、雾气收集等应用过程,但相关研究尚未见报道。针对以上问题,论文首先采用纳秒激光刻蚀及低表面能修饰技术制备了单楔形超浸润表面,通过改变激光加工参数调控微观形貌,探究了表面微观形貌对液体运输过程的影响机理及规律;随后研究了图案形状、几何参数对运输性能的影响规律;最终确定了可实现高效运输的较优参数组合,最后尝试将较优参数下所制备的样品应用在液体运输、雾气收集中。论文的主要工作包括:(1)为确定适合液体运输的图案化超浸润表面微观形貌特征,研究了表面微观形貌对液体运输过程的影响机理及规律。采用两次激光刻蚀、氟硅烷乙醇溶液修饰在铝基体上制备了具有微沟槽的单楔形超浸润表面;通过改变激光加工参数调控微沟槽方向、深度、间距等微观形貌。对具有不同微观形貌的超浸润表面开展了液体运输试验及理论分析,研究了微观形貌对运输速度的影响规律,确定了具有较高运输速度的表面微观形貌特征、所需的激光加工参数,所得表面的运输速度可达58.7 mm/s。(2)为提高图案化超浸润表面的运输速度,在确定较佳微观形貌的基础上,研究了超亲水图案形状对图案化超浸润表面上液滴运输过程的影响,提出了一种串联摆线形超浸润图案,以截取部分的摆线代替直线,可使楔角随宽度增加逐步变化,与单楔形图案相比,可有效减少液体损失,提高运输效率,表面的运输速度可达204.2 mm/s。(3)为确定适合液体运输的串联摆线形图案几何参数,从而进一步提高运输速度,采用单因素试验及二次正交旋转组合试验研究了串联摆线形图案的半径、起始转动角、结束转动角、窄宽比等几何参数对运输速度的影响规律。试验结果表明,当串联摆线形图案半径为26.90 mm,起始转动角为161.10°,结束转动角为180.00°,窄宽比为0.53时,超浸润表面的运输速度相对最高,为约250 mm/s。(4)为探究串联摆线形超浸润表面的实际应用价值,开展了基于串联摆线形超浸润表面的抗重力运输试验、雾气收集试验。串联摆线形超浸润表面具有良好的抗重力运输能力,当倾斜角度为10°时,平均运输速度仍可达154.6 mm/s。与超亲水表面、超疏水表面、单楔形表面、串联楔形表面相比,串联摆线形超浸润表面的雾气收集效率明显更高,可达约1.18 g·cm-2·h-1,具有良好的应用前景。
其他文献
随着空间探测技术指标的提升,空间探测系统对天线反射面板提出了越来越高的制造要求,要求表面粗糙度优于Sa7 nm。为满足上述指标要求,需要对其表面复制成型的富树脂层进行修型加工。然而树脂材料具有粘弹性的特点,采用固结磨粒加工易出现刀具堵塞、树脂涂覆等问题,同时树脂的玻璃化温度低,需严格控制加工区温度。富树脂层的厚度仅为100μm左右,对其加工属于微量去除,需要选用材料去除率低且加工温度低的抛光加工方
很多现代高精度零件具有多尺度表面特征、高精度面形和极低粗糙度等特点,传统古典抛光已不适合,需要确定性的材料去除方法,即计算机控制的抛光技术(Computercontrolled Polishing,CCP)实现。现有CCP技术如气囊抛光、离子束抛光、磁流变抛光等在效率、成本及工件口径适用性等方面各有优劣。轮式聚氨酯柔性抛光粗糙度低、材料去除率高,但是由于抛光模的易磨损,材料去除率下降和抛光质量的恶
过渡金属纳米颗粒(TMNP)在催化反应中常表现出高的活性和产物选择性,但如何实现TMNP的分离回收以及循环使用是目前该领域亟需解决的难题。为解决上述难题,本课题组前期设计合成了一种具有“浊点”(Cp)特性的温控膦配体Ph2P(CH2CH2O)22CH3(LP1000)。本论文将其作为稳定剂,以H2为还原剂还原Ru Cl3·x H2O,制备温控相转移纳米Ru(TPT-Runano),通过UV-vis
<正>对于涉及学生的危机事件,无论学校还是家庭都会很紧张,因为一旦造成不良后果,双方都难以承受。此类事件中家庭的配合与支持特别重要,驻校社工需要在家访服务中获得来自家庭的力量。那么危机个案中驻校社工该如何开展家访?家访“访”什么?笔者结合自身经验,总结出以下几点。危险情况细告知服务对象有伤害身体的行为、放弃生命的想法或者实施自杀未果等情况,都属于危机个案。家访时,
一次性无菌注射器以其诸多优势,广泛应用于医疗领域。然而目前实际生产中,采用传统机械磨削方法,很难在一步工序中加工得到符合质量要求的无毛刺针尖,需要进一步的去毛刺后处理。多步工序涉及到工位转换和配合,大大制约了注射器针尖的生产效率。此外,对于注射器针尖加工质量,多采用显微镜下人工目视抽检的方法检测评价,仍未有一套统一的评价标准,人工检测方法同时也制约了检测效率。因此,实现注射器针尖无毛刺加工和自动化
随着航空航天工业的快速发展,航空发动机中的关键零部件将面临更加严峻的服役环境,而新材料、新工艺和新结构对于航空发动机性能提升的贡献率将超过50%。钛基复合材料(Titanium Matrix Composites TMC)作为具有较大发展潜力的材料,受到了越来越多的关注,其中Ti Cp增强的TMC有望在发动机风扇、高压压气机叶片和机壳等航空发动机关键零部件中取代镍基高温合金。虽然Ti Cp的掺入有
有机发光二极管(OLED)因其响应快,功耗低,可柔性显示等优点成为第三代显示器。热活化延迟荧光(TADF)材料是一种新型纯有机OLED发光材料,因其色域广,成本低以及理论内量子效率可达100%在近些年一直是研究的热点。本论文以3,6-二(二苯胺基)咔唑(Cz DP)为电子给体、以三嗪为电子受体设计并合成了一系列热活化延迟荧光材料。Cz DP作为电子给体,其中的二苯胺强给电子基团使分子的HOMO分散
实现表面液滴合并弹跳的调控在强化冷凝传热、抗结冰、自清洁等领域具有重要的应用前景。研究发现,当液滴在超疏水表面合并时,由于合并后液滴表面积的减小,多余的表面能将转化为驱动液滴从表面弹跳脱离的动能,这被称为合并诱导的液滴弹跳现象。现有的研究主要是通过对表面结构进行设计来提高液滴合并后的弹跳速度以及调控液滴弹跳方向。现有的表面结构比较复杂,容易破坏,无法进行大规模制备以满足实际生产应用。因此,本文设计
近年来,致病微生物传播感染事件频发,已成为了全球首要的公共健康问题。2019年底来势汹汹的新型冠状病毒(2019-n COV),更是引起了世界性恐慌。因此,研发新型高效广谱抗菌剂以有效阻断致病微生物传播是全球热点研究之一。氯胺以其高效广谱等优点作为抗菌剂备受青睐,然而氯胺亲水性差的特性严重限制了其应用范围以及抗菌效率。本组将季铵盐(QA)等离子结构引入到氯胺中得到了系列离子型氯胺抗菌剂,解决氯胺水