【摘 要】
:
运动物体的目标检测和跟踪是当下计算机视觉领域中的重要研究课题之一,它在视频监控、自动驾驶、人机交互、防空预警等领域具有广泛的应用。目前,尽管目标跟踪已经取得了很多研究成果,但在一些复杂多变的场景中,由于目标受到部分遮挡、几何变形、快速运动、尺度变换等因素的影响,现有的算法跟踪目标的精度和鲁棒性不佳,因此,目标跟踪仍然是一个非常具有挑战性的任务。近年来,随着深度学习在计算机视觉的火热发展,深度学习在
论文部分内容阅读
运动物体的目标检测和跟踪是当下计算机视觉领域中的重要研究课题之一,它在视频监控、自动驾驶、人机交互、防空预警等领域具有广泛的应用。目前,尽管目标跟踪已经取得了很多研究成果,但在一些复杂多变的场景中,由于目标受到部分遮挡、几何变形、快速运动、尺度变换等因素的影响,现有的算法跟踪目标的精度和鲁棒性不佳,因此,目标跟踪仍然是一个非常具有挑战性的任务。近年来,随着深度学习在计算机视觉的火热发展,深度学习在目标跟踪领域逐渐成为主流方法。凭借卷积神经网络强大的提取特征的能力以及神经网络上各种优化算法的引入,基于深度学习的目标跟踪方法将跟踪性能也提高到了新的层次。但是,现有网络一方面都是采用AlexNet等浅层网络的进行训练,没有充分发挥深度卷积神经网络的优势。另一方面对于遮挡、背景干扰等复杂场景,网络没有突出重要区域信息,导致跟踪器鲁棒性不佳。本文就此进行改进,主要研究内容和创新点如下:(1)提出了基于改进CIResNet和特征融合的目标跟踪算法。针对现有孪生网络使用浅层网络提取特征判别力不足和深层神经网络存在跟踪漂移的问题,通过实验对比不同CIR单元网络结构以及网络感受野和步长,构建一种基于CIResNet-34的深度卷积神经网络作为主干网络提取特征的方法;利用特征融合手段来解决深层网络表观信息不足的问题,从而进一步提高跟踪器的性能。(2)提出了基于注意力机制的复杂场景目标跟踪算法。针对本文设计的跟踪器对一些复杂场景效果不佳的问题,通过引入空间注意力机制模块和通道注意力机制模块两个层面,对卷积特征赋予不同的权值使得网络模型对目标的判别能力更高;针对目标跟踪过程中生成样本候选框正负样本不平衡问题,通过使用改进损失函数的方式,在原有损失函数基础上,引入平衡因子改进损失函数,降低负样本训练过程中的影响。最终,本文提出的算法在OTB100、VOT2016和2017数据集进行验证,在OTB100数据集中,本文算法的成功率值在所有对比算法中取得了第一名,比Siam RPN高了4.4%。在VOT2016和VOT2017数据集中,本文算法的平均重叠期望在所有对比算法中也取得了第一名,比第二名的Siam RPN高出1.5%和1.9%。
其他文献
车辆检测和车型识别是智能交通领域中的重要研究内容。随着人工智能技术的发展,在智能交通领域运用深度学习解决车辆检测和车型识别问题已经成为一种研究趋势。本文基于深度学习方法对车辆检测和车型识别进行了研究,主要研究内容如下:(1)针对目前车辆检测数据库较少的问题,本文选择南京信息工程大学周围的交通环境作为研究背景,从样本的拍摄采集、正负样本及模糊样本的筛选和标签标注等方面详细介绍了本文构建的车辆检测数据
随着智能设备的广泛运用,包含用户信息的数据不断涌现,基于大数据的人工智能技术有了质的飞跃。但是机遇与挑战并存,人工智能技术利用数据为各行各业带来增益的同时,用户隐私数据泄露的问题也随之出现。因此联邦学习应运而生,这是一种特殊的分布式机器学习框架,它能够联合多客户端训练的同时保护数据隐私,因为客户端的数据不需要离开本地。这样的学习框架为人工智能技术面临的挑战提供了解决方案。本文针对现有联邦学习的缺点
多人姿态估计任务可以概括为两个阶段,第一阶段将输入图像中人体检测出来(人体检测),第二阶段基于第一阶段检测出来的各个人体,进一步将其骨骼关键点位置定位出来(单人姿态估计)。多人姿态估计在人机交互、电影制作和安全监控等领域有巨大的应用背景。在技术方面,轻量化是深度学习多人姿态估计中近年来的研究热点之一。本文对深度学习多人姿态估计的轻量化方法进行了探索和研究,主要研究工作包括:针对单人姿态估计中目前最
随着我国汽车保有量的逐年攀升,私家车通勤在日常出行中的所占比重越来越大。上路车辆的增多带来了许多交通问题,而通勤时段的拥堵问题尤其突出。目前推行的尾号限行、拥堵收费的方式未能充分考虑通勤者的临时出行需求。合乘出行正是缓解通勤时段交通压力和有效利用资源的良策,也是许多出行者倾向的选择。网约拼车近年来得到快速发展,但现有互联网打车平台未能摆脱以盈利为目标的营运性质,利益驱动下的上路汽车只会增多。本文结
目前,随着“海洋牧场”的快速建设和海洋资源的深入探索,水下机器人(Unmanned Underwater Vehicle,UUV)正广泛运用于海洋矿产、渔业等资源的开发。针对水下机器人小型化、大众化过程中出现的操作难、易受干扰、易损坏等问题,本文以自主设计的“Aquaman V3”小型水下机器人为基础,通过优化硬件和控制算法,提高小型水下机器人的稳定性与控制精度,使之能够对抗海流、碰撞等外界扰动,
我国海洋资源丰富,但并未得到充分的开发,相较于河流、湖泊等水域,海洋的水下环境更加复杂和危险,人工进行探索和开发的危险系数过高。水下机器人成为了人类对海洋探索的重要工具,而视觉图像在水下机器人探索与感知周围环境时扮演着重要的角色。由于水体的吸收和散射,水下图像具有对比度低、图像模糊、色偏等问题,影响水下机器人后续的视觉任务。因此,获取高质量的水下图像对人类探索开发海洋有着十分重要的意义。本文根据水
近年来,由于多智能体系统包含控制在航空、工业、运输等领域的广泛应用,引起许多专家学者的关注。多智能体系统包含控制可以看作一致性和编队问题的特殊情形,是指通过设计包含控制算法,驱使一组跟随者在多个领导者的引领下,最终进入并保持在由领导者所形成的凸包中运动。与传统多智能体系统问题相比,包含控制更能突出分布式协同控制的优势。针对系统收敛速度、智能体状态不可知以及信息传递过程中出现时滞、外界扰动、Do S
气候变化带来的影响是方方面面的,并且人们常采取手段对负面的影响进行干预。近年来,人们对于降雨的预测需求越来越多,传统的降雨预测手段需要收集大量的物理信息,增加了复杂度,并且过于规律的预测手段会导致预测不精准。随着深度学习的发展,图像处理在许多任务上取得成效。本文提出利用图像序列预测任务的方法来处理降雨预测任务,取得了令人满意的效果。图像序列预测即给定若干张连续图片,预测后续一张或若干张连续图片的时
六轴工业机器人在现代制造业中有着广泛的应用,是工业机器人的典型代表。为解决六轴工业机器人示教耗时费力和无法适应变化的作业场景等问题,使机器人能够在复杂的环境中实现自主规划,本文以IRB 120机器人为对象,研究了六轴工业机器人的运动规划问题,包括机器人运动学、轨迹规划、碰撞检测和避障路径规划,主要内容如下:首先,对机器人的运动学进行了求解。利用D-H法对机器人进行运动学建模,通过齐次变换得到了机器
行人重识别是计算机视觉中的一项重要任务,其目的是为了检索存在于图像或者视频中的特定行人。近年来,随着深度学习的发展,行人重识别研究也取得了许多突破,并且在安防和刑侦等多个领域取得了广泛的应用。目前,传统的行人重识别方法大多致力于提取丰富的图像特征。但是,当面对实际场景下常见的遮挡问题时,它们的识别精度都会出现大幅下降。根据遮挡情况的严重程度,本文将遮挡式行人重识别分为局部遮挡和部分遮挡两种。本文基