论文部分内容阅读
稀土掺杂发光材料以其优异的光学特性在日常生产生活中的光学通信、太阳能电池、白光LED、光学测温、荧光显示器、生物医学中的光治疗技术、荧光生物标记、生物成像、军事国防事业的激光武器、3D成像和储能材料等诸多领域都具有广阔的应用前景,因而引起了各国研究者的广泛关注。稀土发光玻璃和玻璃陶瓷材料由于其制备工艺简单、高透明和优异的发光性能,使其具有较好的应用前景。因此,开展稀土掺杂发光玻璃及玻璃陶瓷材料的研究具有重要的理论意义和应用价值。本论文通过熔融淬冷法成功制备了Na-Ca-P-B-Zr、Na-Zn-P-B和K-Zn-P-B体系磷酸盐玻璃,并通过后续可控析晶制备出系列磷酸盐纳米晶玻璃陶瓷材料。采用XRD、TEM、FT-IR、DSC等表征手段对玻璃及玻璃陶瓷的结构和热稳定性进行了测试分析;采用透射光谱、上/下转换激发和发射光谱、荧光衰减光谱、Inokuti-Hirayama模型、色坐标及色温计算研究了玻璃及玻璃陶瓷的发光性能及能量传递机制;利用荧光强度比(FIR)技术对Na-Zn-P-B体系和K-Zn-P-B体系玻璃及玻璃陶瓷进行了光学测温特性的研究。其主要的实验研究结果如下:1.玻璃结构分析证实,所有玻璃样品均表现出短程有序长程无序的非晶结构,其中玻璃的网络结构主要由[PO4]、[BO4]和[BO3]三种网络基团构成无序的网络结构。热分析结果表明,所有玻璃均有较好的热稳定性。不过,当稀土掺杂到玻璃基质中后,玻璃的析晶活化能变大,这说明掺杂稀土抑制了玻璃的析晶。2.1.0 Tm3+/2.0 Tb3+/1.0 Eu3+(mol%)掺杂的Na-Ca-P-B-Zr体系玻璃在362 nm激发下可实现白光发射,其色坐标为(0.3418,0.3272),色温为5055.95 K;0.4 Tm3+/0.6Dy3+(mol%)共掺Na-Zn-P-B体系磷酸盐玻璃在354nm激发下也可实现白光发射,色坐标为(0.3471,0.3374),色温为4866.21 K。这一结果与标准白光照明的色坐标(0.3333,0.3333)和色温5454.12 K非常接近。因此,所制备的发光玻璃材料在固态照明和显示等诸多领域具有广阔的应用前景和潜在的应用价值。3.利用荧光衰减光谱和Inokuti-Hirayama模型理论得出:Tm3+/Dy3+和Tb3+/Eu3+共掺Na-Zn-P-B体系磷酸盐玻璃中Dy3+→Tm3+的能量传递主要是以电四极子-电四极子相互作用的无辐射跃迁形式进行能量传递;Tb3+→Eu3+的能量传递形式是以电偶极子-电偶极子相互作用的无辐射跃迁能量传递。4.Tb3+/Eu3+共掺Na-Zn-P-B体系玻璃在378 nm近紫外激发下,在303-753 K温度范围内的绝对灵敏度为1.00×10-2K-1,最大相对灵敏度为1.17%K-1;Yb3+/Er3+共掺Na-Zn-P-B体系玻璃在980 nm激发下,在303-753 K温度范围内的最大绝对灵敏度为4.94×10-33 K-1,最大相对灵敏度为1.22%K-1;Yb3+/Er3+共掺K-Zn-P-B体系玻璃在980nm激发下,在298-748 K温度范围内的最大绝对灵敏度为7.46×10-3K-1,最大相对灵敏度为1.43%K-1;Yb3+/Tb3+/Ho3+三掺K-Zn-P-B体系玻璃在980 nm激发下,在298-598K温度范围内的绝对灵敏为3.10×10-33 K-1,最大相对灵敏度为0.21%K-1;5.Yb3+/Er3+共掺Na-Zn-P-B体系玻璃陶瓷在303-753 K温度范围内的最大绝对灵敏度为5.73×10-3 K-1,最大相对灵敏度为1.33%K-1;Yb3+/Er3+共掺K-Zn-P-B体系玻璃陶瓷在298-798 K温度范围内的最大绝对灵敏度为4.59×10-3 K-1,最大相对灵敏度为1.67%K-1;Yb3+/Tb3+/Ho3+三掺K-Zn-P-B体系玻璃陶瓷在298-648 K温度范围内的绝对灵敏度为5.40×10-3 K-1,最大相对灵敏度为0.18%K-1。