论文部分内容阅读
苹果优异基因的发掘和特异信号转导机制的深入解析离不开以苹果细胞为基础的高效精准目标蛋白表达技术体系。目前相关研究手段主要为同源稳定遗传转化体系和异源遗传转化体系,同源稳定遗传转化体系不仅技术周期长,效率低,而且在某些关键蛋白在特定时间下发生的修饰或相互作用等方面的研究中极为不便;异源遗传转化体系虽能借鉴模式植物成熟的研究手段,然而在异源植物细胞中,由于遗传基础不同,细胞特性和生化调控机理往往存在巨大差异,可能无法准确揭示目标蛋白的真实生物学功能。原生质体瞬时表达技术作为有力的生化机理研究手段,虽已在拟南芥等模式植物中得到成熟和广泛的应用,但在苹果中尚未有相关报道。本研究以‘王林’和‘紫红’苹果愈伤组织为试材分离原生质体,基于Pro-BIUTNT启动子建立苹果原生质体高效瞬时表达技术体系,并对苹果部分免疫抗性的分子机理进行了研究,初步揭示了flg22诱导BAK1和FLS2特异性互作和MKK7-MAPK6-WRKY33的苹果PTI抗性途径,并证实AvrRpt2和NAA介导AXR2降解和AvrRpt2剪切RIN4的苹果ETI抗性途径,并首次发现RIN4内源性剪切机制及NAA和RIN4介导AvrRpt2反馈降解的苹果特异性免疫抗性机制。主要研究结果如下:1.平均每克鲜重愈伤组织制得1×106个以上的原生质体,其中以继代培养10 d的愈伤组织为试材分离的原生质体产量最高,平均每克鲜重的‘王林’和‘紫红’愈伤组织分别最多制得3.68×106个和4.07×106个原生质体。培养20 d和25 d的‘紫红’愈伤组织因老化脱水,质地硬脆且致密,表面深红内部褪色变黄,未分离到正常的原生质体。2.花椰菜病毒(Cauliflower mosaic virus,CaMV)的35S启动子虽能在多种作物中有效驱动目标基因表达,然而在苹果原生质体中瞬时表达活性较弱,无法满足相关生化研究的需要。拟南芥泛素基因UBQ10(Ubiquitin 10)的天然启动子Pro-BIUTNT在苹果原生质体中具有显著高于CaMV 35S的瞬时表达活性,本研究分别检测了Pro-BIUTNT和CaMV 35S启动子驱动参试基因MdERF98、MdERF1、MdERF2、MdERF3a、MdERF6a、MdWRKY29、MdWRKY33、MdBAK1、MdFLS2、MdEIL2在苹果原生质体中的表达水平,结果表明,多数基因在Pro-BIUTNT驱动下获得了强烈的目标蛋白信号,而CaMV 35S启动子驱动的目标蛋白信号微弱或未检出。我们分别以MdERF1、MdWRKY33和MdFLS2为参试基因对愈伤组织继代培养时间和表达时间对目标蛋白表达水平影响进行了研究,结果显示,继代培养6 d的愈伤组织制得的原生质体表达目标蛋白的水平最高,孵育表达6~8 h所得目标蛋白水平最高。Pro-BIUTNT启动子还驱动了目标GFP及GFP融合蛋白在苹果原生质体和烟草叶肉细胞中的高效表达,其荧光信号水平显著强于CaMV 35S启动子。3.不同于苹果原生质体,在拟南芥原生质体中,CaMV 35S启动子具有较高的瞬时表达活性,并与Pro-BIUTNT启动子差异并不显著,且两种启动子在拟南芥原生质体中的瞬时表达活性整体高于苹果原生质体,这可能与由遗传背景决定的种间蛋白表达调控机理的差异有关。4.拟南芥UBQ10基因的苹果直系同源基因的启动子Pro-MdBIUTNT和Pro-MdBIUTNT-2(长度分别为1539 bp和2501 bp)在苹果原生质体中同样具有优于CaMV35S的驱动表达活性,其中,两个长度为539 bp和739 bp(自ATG翻译起始位点向上游)的Pro-MdBIUTNT区段活性较强。5.鉴于核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是植物叶片中含量最丰富的蛋白质,我们分别鉴定了长度分别为1972 bp和3050 bp的苹果Rubisco基因天然启动子Pro-MdRP-1和Pro-MdRP-2及长度分别为2025 bp和2542 bp的Rubisco活化酶(Rubisco activase,RCA)基因的天然启动子Pro-MdRC-1和Pro-MdRC-2在苹果原生质体中的组成型表达活性和光诱导表达活性,结果显示,Rubisco基因相关启动子在苹果原生质体中的组成型表达活性较低,光照处理后微弱提升了其表达水平。6.应用苹果原生质体瞬时表达技术进一步印证了部分苹果PTI和ETI抗性响应机制,PTI抗性方面,证实flg22诱导At BAK1与At FLS2的特异性相互作用在苹果细胞中的保守性,结合体外激酶试验结果发现At MKK7ac可通过磷酸化MdMAPK6对MdWRKY33进行蛋白修饰和磷酸激酶信号传递,MdMAPK6通过不依赖于At MKK7ac的方式提高了MdWRKY33的蛋白质稳定性。ETI抗性方面,在‘王林’苹果原生质体中,萘乙酸(NAA)处理或共表达AvrRpt2均能显著降低AXR2的蛋白质稳定性,AXR2 P87S突变后其稳定性显著提高,说明该机制在苹果细胞同样保守存在。AvrRpt2利用其自身半胱氨酸蛋白酶活性剪切RIN4的机制在苹果细胞中依旧保守存在。7.本研究首次发现了有别于模式植物的苹果特异免疫抗性机制,NAA处理显著降低了AvrRpt2的蛋白水平,说明在苹果细胞中可能存在介导病原菌效应蛋白AvrRpt2降解的特异性反馈调控机制以缓解病原菌对宿主的持续伤害,对平衡植物生长和免疫过程具有重要作用,RIN4的存在同时进一步降低了AvrRpt2的水平。苹果细胞中还存在着不依赖于AvrRpt2的特异RIN4剪切机制,说明苹果细胞中可能存在某些基于RIN4剂量的调控途径,以保持对AvrRpt2的适度敏感性。综上所述,本研究基于Pro-BIUTNT启动子建立了苹果原生质体高效瞬时表达技术体系,初步揭示了部分植物PTI和ETI抗性在苹果细胞中的保守性,同时首次发现了R IN4内源性剪切机制和NAA和RIN4介导AvrRpt2反馈降解的苹果特异性免疫调控机制,这些共性与特性并存的调控机制不仅反映了种间保守免疫机制对植物生存的重要意义,更是植物不断进化以适应自然环境的具体体现。本研究不仅为苹果功能基因和特异信号途径的相关研究提供了良好的技术支持,同时也为深入解析苹果特异免疫抗性机理提供了一定的理论和技术参考。