论文部分内容阅读
微分方程边值问题经常被用于刻画实际问题,在数学,物理,工程及相关科学领域中有重要的应用.在各种方程问题之中,二阶微分方程边值问题扮演着重要的角色.从力学的观点来看,由于二阶问题描述的基本物理事实为牛顿决定性原理,是刻画物体运动的基本规律之一,相关的问题出现在各种科学及工程模型之中,始终受到人们的广泛关注.当非线性项与梯度无关时,相应的问题为“守恒”问题,人们已经给出了各种各样的研究方法,其中最常用的方法之一是应用变分法求某种条件下的极值曲线.变分法的物理学对应是“最小作用原理”,是运动广泛遵循的自然法则.对于带有梯度项的问题,一般情况下是“非守恒”的,变分法一般不能直接应用,现有的方法主要集中于拓扑度方法及上下解方法.本文尝试运用变分法,不动点理论,拓扑度理论,Nehari流形方法等多种非线性分析方法,研究几类具有梯度项或导数项的非守恒的微分方程边值问题解的存在性及多重性,并给出解的符号信息的刻画.这些结果将会为应用变分方法研究非守恒的非线性问题提供一种途径和框架.本文对三个方面的问题进行研究,分别是梯度相关的椭圆方程Dirichlet问题,梯度相关的椭圆方程混合边值径向解问题和导数相关的常微分方程周期解问题.具体来说本文研究的第一个问题是梯度相关的椭圆方程Dirichlet问题解的存在性.假设方程右端的非线性项是连续的,并且与梯度有关.此外还假定非线性项是局部Lipschitz连续的,在零点及无穷远处是渐近线性增长的,并且渐近斜率分别位于算子第一特征值的两侧.在此条件之下我们得到了至少存在一个正解和一个负解的结果.此外还考虑了非线性项超线性增长情形下解的存在性,对于这方面的假设条件为一致超线性条件,次临界增长条件,一致单调条件以及局部Lipschitz条件.在这些条件的保证下我们证明了至少存在一个正解和一个负解的结果.本文研究的第二个问题是梯度相关的椭圆方程混合边值径向解的存在性.在渐近线性情形下,我们在非共振条件下建立了非平凡径向解的存在性.而当非线性项在零点和无穷远点处的渐近斜率分别位于第一特征值两侧时,我们证明了至少存在两个非平凡径向解,其中一个为正的,另一个为负的.除了渐近线性问题,我们同样建立了超线性情形的结果.在假设非线性项于零点和无穷远点均满足超线性增长条件,并且是局部Lipschitz的条件下,我们证明了此类问题至少存在一个非平凡径向解.此外,在只假定非线性项具有连续性的条件下,我们仍然得到了至少一个正解和一个负解的存在性.本文研究的第三个问题是具有导数项的二阶微分方程周期解的存在性.其中非线性项是连续函数,关于时间是周期的,关于未知函数及导数满足对称性,并且满足超线性增长条件及局部Lipschitz条件.我们证明了对于充分小的周期,问题一定存在周期解,并给出了周期解变号信息的刻画.全文共六章,具体构成如下:第一章是绪论,介绍本文所研究问题的实际应用背景,前人工作以及本文主要结果.第二章是预备知识,介绍本文用到的基本概念及主要引理.从第三章到第六章是论文主体部分.第三章研究带有梯度项的二阶椭圆方程边值问题.在非线性项渐近线性增长的条件下,我们证明解的存在性及多重性.第四章考虑带有梯度项的二阶超线性椭圆问题,在不具有Ambrosetti-Rabinowitz增长条件的情形下,我们给出解的存在性.第五章研究二阶椭圆方程混合边值问题的径向解,分别在超线性及渐近线性两种情形下得到了解的存在性及多重性.第六章研究带有导数项的常微分方程的周期解.应用临界点理论与不动点方法,得到了周期解的存在性.