【摘 要】
:
弱小目标检测技术与国民安全密切相关,其在保障领空安全、机场净空防护以及军事敏感地区的空中管制等领域具有广泛的运用和重要的价值。小目标成像区域小、特征信息弱、尺寸变化范围大,这些特性导致其在实时系统中难以被准确地检测出来,因此如何从复杂变化的背景中实时、准确地捕获目标并及时发出预警是该项技术的核心关键,也是本课题的研究重点。基于该问题,论文做了以下工作:基于传统弱小目标检测方法,论文提出了一种多尺度
论文部分内容阅读
弱小目标检测技术与国民安全密切相关,其在保障领空安全、机场净空防护以及军事敏感地区的空中管制等领域具有广泛的运用和重要的价值。小目标成像区域小、特征信息弱、尺寸变化范围大,这些特性导致其在实时系统中难以被准确地检测出来,因此如何从复杂变化的背景中实时、准确地捕获目标并及时发出预警是该项技术的核心关键,也是本课题的研究重点。基于该问题,论文做了以下工作:基于传统弱小目标检测方法,论文提出了一种多尺度滤波器融合检测算法来有效解决传统滤波算法难以适用于目标尺度变化时的检测问题,首先通过对图像进行不同尺度地降采样来构建图像金字塔,然后在每个尺度空间使用级联滤波器进行背景抑制后采用自适应阈值分割方法获取目标信息,最后融合各尺度空间中的目标信息实现多尺度目标检测,该方法通过结合级联滤波器和图像金字塔的检测方式有效地降低了算法的计算量。传统弱小目标检测方法大多基于人为设定的规则,在实际应用中难以找到适用全局的匹配规则,因此该类方法往往只在某些特定场景下表现良好,却难以适用于其他场景。基于深度学习的目标检测算法通过数据驱动建模的方式让模型在训练过程中自主地选择特征并不断优化选择,使模型能够学习到各种不同场景下的特征,论文基于轻量级目标检测网络Mobile Net V2_SSD,通过引入特征金字塔结构来提升模型对小目标特征的表达能力,实验结果表明,改进模型具有原模型相近的检测速度,但对小目标的检测精度有了明显提升。自编码器可以实现对输入信号的精确复现,从小目标图像的特性出发,论文提出使用卷积自编码器网络来对小目标图像进行背景重建,训练网络使其能将输入图像映射为不含目标的背景图像,之后通过差分以及图像分割技术获取目标信息,实现小目标的实时、准确检测。论文中采用步长为2的卷积层来代替池化层进行降采样,保证了网络的特征提取性能。实验结果表明,基于卷积自编码器的弱小目标检测算法比传统基于背景抑制的滤波算法具有更好的检测性能。
其他文献
随着工业4.0的到来,各行业正不断朝着智能化的方向发展,工业机器人作为工业生产中的关键技术之一,成为企业实现产业优化升级的重要部分。自动导引车作为机器人的一种,随着近年来各种导引技术的不断发展,其应用场景变得更加广泛,其中视觉导引由于其巨大的应用潜力成为自动导引技术中的研究热点。本文根据实际应用中在室内场景下的AGV小车行驶需求,提出一种基于场景识别、场景下辅助行驶和行驶中特征物检测的单目视觉AG
唇语识别任务是指通过说话人的嘴唇动作,识别出说话人的语言内容。唇语识别的关键是如何有效提取出能反映嘴唇运动信息的特征向量。深度神经网络可以通过目标函数和反向传播机制更新海量参数的权重,自动学习到与目标任务相关的特征,在唇语识别任务上取得了较好的结果,但是由于唇语识别任务本身的复杂性和嘴唇运动的多样性,唇语识别任务仍然存在很多难点和挑战。针对这些问题,本文提出了一种基于深度学习注意力机制的词语级别的
土木工程结构运营过程中受到环境侵蚀、材料劣化以及各类荷载作用,结构损伤逐渐萌生、发展甚至严重威胁结构的正常使用与承载能力,因而合理有效的结构健康监测与损伤识别技术是结构损伤早发现、性能退化早预警的有效保证。钢筋腐蚀是导致钢筋混凝土结构早期损伤的重要原因之一,如何准确获取钢筋的腐蚀信息包括腐蚀的位置与腐蚀的面积,是进一步评价腐蚀后结构性能的关键。桥梁支座损伤是影响桥梁结构性能的重要因素,有效监测桥梁
传感技术作为信息技术三大支柱之一,早已渗透入社会的方方面面中,像科学研究、食品安全、环境监测、疾病检测、化学化工等方面。但是随着信息社会的进步,各个领域对传感器件的要求提高了,由于电互连引起的“瓶颈效应”使得电子器件很难实现对大容量的信息的高速处理。而光信号的大宽带、超高速、可并行处理等优势可以很好地解决这个问题。目前用光子代替电子来加载信息已经在光通信领域取得了很多的进展,有效提高了处理信息的速
随着物联网技术的不断发展,家居设备的智能化进入了快速发展阶段。然而由于不同商家的产品之间相互独立,不同家居设备的控制方式不尽相同,导致整体家居产品的使用体验不佳。智能化的家居交互方式,能够有效改善智能家居产品的交互体验,其中,基于手势姿态的人机交互技术,相比于传统的遥控设备,更符合人们的日常操作习惯,交互方式更加自然,所以研究智能家居中的人机交互技术,具有重要的现实意义。基于以上现状,本文开展了基
由二维图像提取出图像场景的深度信息是计算机视觉中的经典问题。准确的深度信息能够更好的让我们理解场景的三维结构,了解场景中物体之间的三维关系。深度信息在自动驾驶、AR、VR、机器人导航等具有重要的应用价值。在景深估计算法中,利用传统的双目立体匹配算法存在着精度和实时性不能共存的矛盾,同时也存在着只能适用于特定场景的问题。近年来,随着人工神经网络的发展,尤其是卷积神经网络在图像上的应用使得景深提取取得
目前在生物群体和人类社会中的集群行为得到了深入的研究。然而,动物的协同行为与人类有着显著不同。一般而言,描述动物协同行为的短期网络相比于人类有着较高的阶数,这就需要用高阶网络去刻画。在本文中提出了一种使用集群行为时序数据的方法来确定动物群体的最优极大马尔科夫阶数从而反映交互网络的最大记忆能力。我们的方法结合了时延的因果推断算法以及高阶图模型。一方面因果推断算法基于信息论,通过聚合因果邻居和删除非直
伺服控制是运动控制领域的一个重要分支,伺服系统在现代工农业、国防和医疗等高新科技领域有着十分广泛的应用。伺服系统的典型机械传动结构是由高速伺服电机驱动减速传动机构,再由传动机构带动负载运动,完成能量的转换。一方面,这样的机械传动结构中一定会存在齿隙等非线性环节,齿隙非线性既是一种力矩传动过程中不可缺少的非线性因素,同时也是一种影响系统性能的非常重要的因素;另一方面,由于传动机构的刚度不是理想的无穷
深度估计作为计算机视觉领域的一项基础性研究,在自动驾驶、三维视频、增强现实等领域具有广泛应用。单目深度估计具有价格低廉、适用性广等特点,因此近年来逐步成为研究热点。现阶段,深度学习技术在图像分类、目标检测和语义分割等多个领域都取得了显著进步。借助深度模型强大的特征表达能力,大量学者设计了一系列端到端的单目深度估计算法,并在性能上获得明显的提高。但是,现有的方法仍存在某些问题:这些算法大都遵循静态环
随着社会的发展和科技的进步,智能图像算法被广泛应用到军事、医疗、交通等各个领域,其中目标检测和跟踪算法是智能图像算法中最热门的分支。工程环境下的大量虚警以及计算平台性能的限制,给目标检测与跟踪带来了更大的挑战。本文以周界监控项目为背景,研究实时的目标检测和目标跟踪算法,并通过多枪一球的多传感器融合策略,兼顾周界全景的同时自动跟踪放大目标细节,以满足快速告警、精准定位、全景探测的实际项目需求。首先,