【摘 要】
:
A15型Nb3Sn超导体是制造高场(>10T)超导磁体线圈的主要材料,被广泛应用于磁约束可控核聚变和高能物理等强磁体制造领域。力学变形诱导的Nb3Sn材料超导电性能弱化是强磁场磁体制造需要解决的基础问题之一,研究高压下Nb3Sn晶体的超导相转变行为对于揭示这一弱化机理具有重要意义。本文运用分子动力学模拟方法,基于Nb3Sn晶体结构的实验观测结果,构造了Nb3Sn单晶体的晶体结构,并根据Vorono
【基金项目】
:
国家自然科学基金委员会(11772212、11402159);
论文部分内容阅读
A15型Nb3Sn超导体是制造高场(>10T)超导磁体线圈的主要材料,被广泛应用于磁约束可控核聚变和高能物理等强磁体制造领域。力学变形诱导的Nb3Sn材料超导电性能弱化是强磁场磁体制造需要解决的基础问题之一,研究高压下Nb3Sn晶体的超导相转变行为对于揭示这一弱化机理具有重要意义。本文运用分子动力学模拟方法,基于Nb3Sn晶体结构的实验观测结果,构造了Nb3Sn单晶体的晶体结构,并根据Voronoi图形构建了具有周期性边界条件的Nb3Sn多晶体分子动力学计算模型。通过计算Nb3Sn单晶体的弹性常数以及晶格常数,与实验测量结果和第一性原理模拟结果比较,验证了经验势函数的可靠性。在此基础上,研究了高压下Nb3Sn晶体在原子尺度上的变形特点,模拟结果给出了Nb3Sn单晶体和多晶体内部结构变化图以及Nb原子、Sn原子、Nb3Sn晶界上的应力分布云图。在高压下Nb3Sn晶体原子尺度变形分子动力学模拟的基础上,基于Nb3Sn单晶体在Tc~44K温度范围内常态电阻率的T2(温度平方)依赖性,建立了载荷作用下极低温区内Nb3Sn单晶体的超导相转变模型,并将该模型拓展至Nb3Sn多晶体高压下的超导相转变行为的描述上。模型预测结果与高压下Nb3Sn晶体的超导相转变行为曲线、临界温度弱化曲线定性吻合,通过与实验观测结果的比较,揭示了晶界变形在Nb3Sn超导体的临界温度退化行为中所起的作用。本文的研究结果弥补了高压下极低温区环境Nb3Sn晶体力学变形及力-电耦合效应实验测量的细节,有助于提高对Nb3Sn超导体低温-高压作用下的变形机制的认识,同时有助于定量揭示晶界变形在超导体力-电耦合行为中所起的作用。
其他文献
煤化工企业产生的高浓度难降解有机废水,产量日益增加,常规的生物化学处理工艺不能对其进行有效出理,造成了严重的环境问题。非均相臭氧催化氧化技术因其具有强氧化性、无二次污染等特点而被认为是深度处理煤化工废水的有效方法,但传统的单一价态金属氧化物型催化剂电子转移效率低,羟基自由基产量小。过渡金属复合氧化物具有多种价态的金属离子,能提高电子转移效率,改善催化活性,提高羟基自由基产量。因此,本论文选用价态多
近年来,由于发光材料被广泛应用于各个领域,其制备工艺及其光学特性的研究成为人们广泛关注的研究课题,其中对以Y2O2S为基质掺杂的发光材料的制备和光学性能的研究是材料物理研究的热点问题之一。由于S的熔点和沸点与Y2O3的差别很大,取得高质量Y2O2S非常困难。我们改进了固相反应工艺,在不添加任何助溶剂,不用石墨坩埚的情况下,直接使Y2O3和S高温汽固相反应而得到高质量的Y2O2S,避免了污染,简化了
随着世界范围内不断增长的城市化和工业化,由有机污染物和重金属引起的水污染已成为威胁自然生态系统和人类健康的全球性问题。许多河流和地下水中的重金属含量超过了安全标准,尤其是六价铬Cr(Ⅵ)污染严重超标。光催化技术被视为有效去除废水中Cr(Ⅵ)的有效手段,其反应环境条件温和,能耗低,可直接通过太阳光将具有毒性大的Cr(Ⅵ)还原成具有毒性小且容易沉淀的Cr(Ⅲ),具有高效、清洁,绿色等特点。作为一种常见
我国油菜的氮肥施用量大,但氮肥利用率仅30%左右,且氮肥施用量越高,氮素利用率越低。硝态氮(NO3--N)是油菜的主要氮源,其吸收、体内运输和代谢都对油菜的氮素利用率有显著影响。本研究以油菜氮高效品种xiangyou15(H)、氮低效品种814(L)以及相关的拟南芥遗传材料为研究对象,采用砂培和水培试验,利用生理生化分析及分子生物学等技术手段,探究了正常和低氮处理下油菜NO3--N吸收、体内运输分
社会经济的快速发展,农业、工业以及家庭用水中排入水体中的含氮污染物在不断增加,水处理工艺末端出水常面临着硝酸盐氮(NO3--N)和总氮(TN)超标问题。与其他硝酸盐氮(NO3--N)处理技术相比,电化学脱氮技术具有无需外加试剂、操作简单、环境友好的特点。但电化学脱氮技术也存在电极使用寿命短、去除效率低和能耗高等问题,难以满足实际工程应用。因此,开发高效脱氮、性能稳定、经济效益高的电极材料用于电化学
人类在生产和生活中产生很多难以生物降解的有机污染物,如染料、抗生素等,由于它们在环境中存留时间长,成分复杂,可生化性差,在水体中易积累、迁移,常规活性污泥处理工艺难以将其去除。Fenton试剂(Fe2++H2O2)利用羟基自由基(·OH)降解难生化降解的有机污染物,但是Fenton方法存在p H适用范围窄、Fe(II)再生难、铁泥二次污染及H2O2利用率低等缺点。异相Fenton技术,与均相Fen
作为新一代可充电钠离子电池(SIBs)正极材料,Na3V2(PO4)3 (NVP) 具有理论容量大、化学稳定性好、使用寿命长、天然丰度高、价格低廉等优点,因此,受到了广泛的关注。综述了近年来NVP正极材料的储钠机理、制备方法和改性研究的最新进展。基于固有的晶体结构和离子迁移机制,总结了NVP正极材料的储钠机理。评价了不同制备方法对NVP正极材料的形貌、粒度分布、结晶度等的影响规律。此外,针对NVP
用化学沉淀法制备中空管状g-C3N4/Ag3PO4复合催化剂。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)和荧光光谱对其结构、形貌和光学性能进行了表征。结果表明:Ag3PO4纳米颗粒均匀地分散在中空管状g-C3N4表面,两者紧密结合形成异质结。研究复合催化剂在可见光照射下降解盐酸四环素(TC)的光催化活性。结果显示:复合催化剂在80 min内对TC
压裂增产煤层气技术是一种有效储层增渗技术,作为主要压裂增产技术之一的水力压裂在工程应用中存在诸如:裂缝形式单一、成网困难、水污染严重等问题。当前,超临界CO2压裂作为新兴技术具有裂缝扩展形式多样、成网能力强、近乎零储层伤害等特点备受关注。同时,超临界CO2与煤体作用过程中可溶蚀萃取煤中部分有机质,致使煤体化学结构与力学特性发生改变。为在压裂过程中充分体现超临界CO2化学-力学改造煤体效能,本文预先
基于2019年秋季海南省空气质量和气象监测数据,结合相关分析、HYSPLIT后向轨迹模型、PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)等分析方法对海南省4次O3污染过程特征及潜在源区进行深入分析。结果表明,①过程1和过程3分别发生在9月21~30日和11月3~11日,持续时间达到了10 d和9 d,ρ(O3-8h)(最大8 h平均)分别为145.52 μg·m-3和143.55 μg·m-3