【摘 要】
:
认知雷达作为雷达未来发展的方向之一,其最大的特点是构成了从雷达接收端到发射端的闭环信号处理系统,该系统通过实时感知环境和目标信息,基于先验信息和推理调整雷达发射和接收参数,使雷达能在各种环境中处于最优的状态。MIMO雷达由于在发射端具有极高的设计自由度,可以作为实现认知发射的载体,能在阵列结构固定和发射资源有限的前提下,根据不同的任务场景灵活设计发射端各天线的发射信号。在此背景下,本文主要研究基于
论文部分内容阅读
认知雷达作为雷达未来发展的方向之一,其最大的特点是构成了从雷达接收端到发射端的闭环信号处理系统,该系统通过实时感知环境和目标信息,基于先验信息和推理调整雷达发射和接收参数,使雷达能在各种环境中处于最优的状态。MIMO雷达由于在发射端具有极高的设计自由度,可以作为实现认知发射的载体,能在阵列结构固定和发射资源有限的前提下,根据不同的任务场景灵活设计发射端各天线的发射信号。在此背景下,本文主要研究基于MIMO雷达的认知发射及软件实现,包括发射波形设计和用于指导波形设计的资源管理策略优化方法,本文的主要工作内容如下:1.针对MIMO雷达不同的阵列结构,研究了不同的发射波形设计方法。首先,介绍了MIMO雷达信号模型,包括一维线阵和二维面阵结构下的相关概念。其次,对于正交波形,以最小化峰值旁瓣电平为准则设计正交波形,并分析了阵元数量和信号码长对波形正交性的影响。然后,针对部分相关波形,研究了用于目标检测的宽波束和用于目标跟踪的同时多波束设计方法:对于一维线阵结构,使用基于半正定规划的最优协方差矩阵算法和基于低旁瓣的基波束算法设计发射方向图,并利用序列二次规划算法优化信号初相,改善发射信号的相关性;对于二维面阵结构,讨论了基于基波束和子阵划分的发射方向图设计方法。2.针对不同任务场景,研究了雷达资源管理方法。首先,针对匀速直线运动目标,研究了其在跟踪精度约束下,通过优化目标重访时间最小化雷达照射次数的时间资源管理算法。其次,针对匀速圆周运动目标,研究了其在雷达照射概率约束下的重访时间优化算法。并在此基础上,进一步讨论了一种基于最小化波束负载的重访时间和驻留时间联合优化算法,实现雷达资源的节约。最后,将以上方法拓展至多目标场景,实现了在跟踪精度约束下的面向多目标跟踪的雷达资源分配算法。3.针对MIMO雷达认知发射的软件实现问题,利用C语言实现MIMO雷达认知发射模块的设计。首先,介绍了编程环境和第三方MKL库的相关内容。然后,具体分析了认知发射各子模块的设计流程,并详细说明了其中涉及的函数和数据存储方式,通过与MATLAB仿真对比验证各子模块的正确性。最后,将认知发射模块加入认知雷达系统联合调试,验证该模块的正确性及有效性。
其他文献
随着现代科技的不断发展,基于雷达图像的舰船目标检测识别算法也层出不穷。经典深度学习目标检测识别算法虽然在精度上有着不错的表现,但其检测速率依然达不到许多军事应用的要求。而且由于雷达图像的特殊性,在实际应用中我们很难得到大量的雷达图像样本。因此,基于小样本的雷达图像舰船目标检测识别是一个富有挑战性也极具意义的研究课题。针对此课题,本文采用了生成对抗网络结合舰船目标三维电磁散射信息的方法,对舰船目标进
在偏远地区与“一带一路”沿线国家的边境地带,一直存在着通信基础设施匮乏、地域广阔而人口分布不集中的现象。随着“一带一路”的推进,更多的通信研究者注意到那些发生在跨境地质复杂区的自然或人为灾害,特别是那些对通信基础设施具有严重破坏性的不可控灾害,往往会加剧人民生命、财产的损失。监测设备集群能够持续更新、上传观测到的灾害信息,但这些地区并不适合部署监测设备集群。重大灾害发生后,如果处于这些区域的通信基
不论是军事领域亦或民用领域,导航的地位都在日益提高,人们对导航的依赖日益增强。其中捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)由于其结构简单,设备容易集成,一经提出便迅速发展,已经在很多领域展开应用。SINS工作主要可以分为三步:传感器数据的校准、初始对准以及惯导解算更新。其中,初始对准是非常重要的一环,对准结果的精度直接影响最终的导航结果
作为移动通信不可或缺的重要领域,卫星通信的历史由来已久,应用前景广阔。其中,反射面天线因其高增益、功率容量大与结构稳定等优势一直是卫星通信中应用最为广泛的天线形式之一。常见的单反射面天线有前馈反射面与偏置反射面之分。近年来,系统化、多频段以及小型化需求逐渐成为反射面天线主要的研究趋势。而反射面天线的多频段化实际上就是对馈源系统的多频段工作要求。基于此,本文将馈源系统的多频段设计作为研究目标,以下是
近来,伴随着以Deepfake为代表的人工智能视频合成伪造技术取得的一系列成果,我们正在进入一个难以分辨真假图像的世界。人脸合成、面部身份互换、面部属性伪造和面部表情伪造四种人脸伪造技术正在广泛应用于视频类消费娱乐领域,但同时也在为虚假色情、假新闻、恶作剧和金融欺诈等方向不断提供支撑。伪造技术的各类负面应用引发广泛的社会担忧,检测假脸成为了学术界的热点问题。伪造检测领域中,深度学习已经成为在检测D
随着深度学习的发展,大规模的遥感影像和自然影像数据集让图像分割算法在更多领域得到应用,但是样本的多样性也给分割算法带来了一定的挑战,其中如何解决跨尺度特征融合以及多尺度目标分割一直都是学术研究的热点。考虑到现有基于深度学习的图像分割算法存在的问题,本文针对目标分割的难点,从特征提取网络、高分辨图像恢复、几何特征学习等方面提出了改进方法。主要研究内容如下:1、提出一种基于自适应提升小波融合网络的多尺
聚类算法是指根据数据的关联性,将相似数据划分至相同数据簇,而将相异数据划分至不同数据簇的过程。随着计算机深入到人们日常生活中,互联网上每天都会产出海量的数据,但这些数据大多数是不包含标签的。给这些海量数据做人工标注非常耗时费力,所以目前较为成熟的有监督学习算法面临着训练数据匮乏的问题。因此使用无监督学习中的聚类算法,根据样本之间的相似性对其自动分组具有非常重要的研究意义。传统的聚类算法只能提取数据
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)作为一种多载波调制技术,凭借高频谱效率与抗多径干扰能力等特点,在线性时不变信道中的性能优异。然而,OFDM在高多普勒扩展的时变信道(如高速铁路移动通信)中的性能会急速下降。正交时频空(Orthogonal Time-Frequency Space,OTFS)在高多普勒扩展信道中,其每个发送
自然语言理解的研究是目前人工智能领域的热点之一,以此为核心的技术突破与相关模型的落地实现也层出不穷。目前,深度学习在工业产品订制中的应用尚未推广开,随着智能制造的兴起与互联网技术的进步,未来借助自然语言理解实现用户产品个性化推荐必将迎来更大的市场空间。为用户提供更好的个性化推荐,关键是要准确了解用户的偏好特征。计算机在理解用户偏好时首先要解决的是自然语言理解中出现的歧义问题。本文通过分析国内外自然
近年来,煤矿托管运营模式逐渐发展成为一种新型煤矿生产组织模式,其特点是把煤矿企业的所有权与经营权剥离,将中小型煤矿委托给生产经验丰富、管理团队专业、技术水平高、社会资源充足的专业化运营公司,解决了煤矿企业传统经营模式下人员素质低、技术力量薄弱及安全风险管控不足的问题。随着国家对托管运营模式的推广应用,出现了一系列风险管理问题,例如委托方与被委托方财务管理纠纷不断、安全事故频发等,反映出煤矿企业对托