论文部分内容阅读
本文采用分子自组装方法对炭纤维(CF)表面进行改性,从而在CF复合材料界面实现可调控、定向有序排列的界面相。并通过分子动力学(MD)模拟方法,在分子水平上探索了炭纤维聚合物基复合材料的界面作用规律,这对于推动我国复合材料界面科学理论及表面处理技术的发展,具有重要的理论和实际意义。针对环氧树脂(EP),选用金表面自组装硫醇分子体系。采用分子模拟方法探讨了不同链长、不同末端官能团的硫醇分子对分子自组装膜(SAMs)/Au(111)与环氧树脂界面性能的影响,并且通过实验对模拟结果进行了验证。在分子模拟部分,采用密度泛函理论(DFT)研究了甲基硫醇(MT)及2-巯基乙醇(ME)在Au(111)表面的吸附结构,结果表明其最稳定的吸附位置为bri-fcc位。在DFT研究基础上,建立了满覆盖率下的功能化烷基硫醇分子S(CH2)nX(X =-OH、-NH2、-COOH,n=117)在Au(111)表面的初始吸附结构,并采用MD模拟方法对其排列结构进行了研究。模拟结果表明,不同末端官能团的SAMs结构随链长的变化趋势是相似的,并且三种SAMs的稳定性强弱顺序为:S(CH2)nCOOH>S(CH2)nNH2>S(CH2)nOH。以Au(111)表面自组装S(CH2)nX的MD模拟结果为初始表面模型,建立了SAMs/Au(111)与环氧树脂的界面模型,通过模拟退火法,寻找最低能量的界面结构。模拟结果表明,对三种不同的界面体系,界面结构最稳定时的自组装分子链长分别为n=10、11。这三种界面体系的稳定性顺序为:S(CH2)nNH2/EP>S(CH2)nCOOH/EP>S(CH2)nOH/EP。采用化学镀金方法使CF表面金属化,然后在其表面自组装上5种硫醇分子[S(CH2)nOH(n=2,6,11)、S(CH2)2NH2、S(CH2)2COOH],考察不同的自组装分子对CF/EP复合材料界面剪切强度(IFSS)的影响。实验结果表明,对于S(CH2)nOH,链长n为11的复合材料的IFSS比n=2、6的复合材料的IFSS要高,并且随着链长的增加,IFSS先减小后增大。而对于同一链长、不同末端官能团的硫醇分子,其复合材料IFSS的大小顺序为:S(CH2)2NH2>S(CH2)2COOH>S(CH2)2OH。这一结果与本文MD模拟结果完全一致。针对聚芳基乙炔(PAA)树脂,选用羟基化表面/有机硅烷偶联剂的自组装体系。采用MD方法重点研究了偶联剂链长对CF/PAA界面性能的影响。模拟结果表明,CF/PAA界面作用能随偶联剂分子链长的增大,呈现先减小后增大的趋势;当n=100时,界面能最低,界面结构最稳定。CF/PAA界面作用能与硅烷偶联剂的分子链与PAA分子之间发生的缠结作用以及偶联剂碳链在炭纤维表面的覆盖率有关。采用臭氧化法对CF表面进行硅烷偶联剂改性,并对自组装不同链长偶联剂(n=118)的CF/PAA复合材料进行层间剪切强度(ILSS)和IFSS测试。实验结果表明,随着偶联剂碳链长度的增加,复合材料的界面强度逐渐增大。对其层间剪切断口的扫描电子显微镜(SEM)分析同样表明复合材料的界面粘结性能随碳链长度的增加而改善。对CF/PAA复合材料,其界面性能提高的主要原因是自组装于炭纤维表面的偶联剂分子链和PAA树脂的分子链之间发生的缠结作用,并且这种作用在n≤18时随着偶联剂分子链长度的增加而增强,这一规律与本文MD模拟得到的规律是一致的。