论文部分内容阅读
当今国内外农业生产活动中,拖拉机作为主要农作工具发挥着不可或缺的作用。随着科学技术的发展与机械化水平的提高,要求拖拉机向更加智能、高效、环保的方向发展,以推动现代化绿色农业的进程。传统拖拉机由于尾气污染,操作繁琐,以及结构相互关联带来的维修拆解不便和互换性较差等问题,严重阻碍了绿色农业的发展。本文在“十三五”国家重点研发项目的支撑下,根据《双电机耦合驱动电动拖拉机(35马力)整机集成创制与试验考核》(2016YFD0701005)的国家重点研发课题,针对传统拖拉机的不足,摒弃传统的内燃机驱动的方式,以SF400E为原型,设计一种基于模块化思想的35马力双电机驱动的纯电动拖拉机来代替传统拖拉机,弥补现阶段电动拖拉机的市场空白。根据SF400E型拖拉机结构组成,按其功能将整机划分为驱动模块、电池模块、前桥转向模块、耦合器模块、后桥模块以及悬挂提升模块;以充分利用原有零件进行模块设计,同时增强模块的柔性化设计,使各模块具有独立性又相互协调,缩短设计周期以及降低制造成本;给出了各模块的连接方案,设计了用于连接前桥与耦合器的连接构件,完成了整机的匹配设计。构建了整机的三维装配模型,以实现对各模块干涉情况的检验以及对整机物理参数的测量。分析了现有电动车辆的驱动构型,采用双电机耦合驱动代替内燃机驱动的驱动方式;提出了一种采用主电机进行额定输出,利用辅助电机进行速度调节与功率补偿的工作方式;设计了一种适用于拖拉机使用的双电机驱动、双独立输出的分汇流驱动构型;分析了该构型的多种驱动方式;在此基础上,完成了动力耦合器设计。针对设计的耦合器传动系统,模拟了驱动方案中动力输出转速540 r/min、动力输出转速750 r/min、主电机单独驱动以及辅助电机单独驱动四种拖拉机的基本工况。基于ADAMS对驱动系统通过step函数约束四种模型进行运动仿真,对比分析各组的仿真结果,得出了各齿轮的运动状态与辅助电机控制的减速比具有正相关关系的结论;分析了齿轮角加速度、加速度与速度的关系,以及行星轮带来的偏载影响,结果证明转速越高,系统稳定性越差。并提出了主、辅电机的驱动控制方法,验证了本文设计的驱动构型与耦合器的合理性。针对整机驱动方式改变引起的零部件具有强度隐患的问题,仿真分析了耦合器与前桥的连接构件以及前桥在单倍载荷下的应力作用效果,在满足使用要求的基础上,根据机械设计要求,分析了其在施加三倍载荷时的应力分布,以预防冲击造成的过载失效。结果表明,原有前桥在横梁与转向轴筒连接处产以及垂直于横梁的连接套筒连接处生较大的应力集中,应采用10 mm厚的Q275结构钢并使用至少8 mm倒角方可满足使用要求;连接板件在结构拐角处、焊接连接处以及螺栓孔处产生应力集中,最终确定连接板件应使用双层10 mm Q650结构钢才能满足使用要求。