【摘 要】
:
点云可用来描绘物体在三维空间中的形状,被广泛应用于自动驾驶、质量检测、结构可视化以及动画渲染等领域。随着深度学习技术的发展,人们逐渐将视角从二维视觉转向三维视觉,点云由于能够最大限度地保留物体的几何信息,因此成为研究该问题的首选。近些年来,在大规模三维点云上展开的深度学习工作已经取得了巨大的进展。然而,点云中专门面向小目标的语义分割仍然是该领域的挑战之一,许多问题亟待解决:(1)小目标所承载的语义
论文部分内容阅读
点云可用来描绘物体在三维空间中的形状,被广泛应用于自动驾驶、质量检测、结构可视化以及动画渲染等领域。随着深度学习技术的发展,人们逐渐将视角从二维视觉转向三维视觉,点云由于能够最大限度地保留物体的几何信息,因此成为研究该问题的首选。近些年来,在大规模三维点云上展开的深度学习工作已经取得了巨大的进展。然而,点云中专门面向小目标的语义分割仍然是该领域的挑战之一,许多问题亟待解决:(1)小目标所承载的语义信息和物理拓扑结构通常呈现出明显的稀疏性,加之无序性与置换不变性,使得现有研究无论是二维领域的小目标分割还是三维领域的一般语义分割,都难以推广到三维小目标语义分割中。(2)小目标的稀疏性会引发类别不平衡等问题。海量背景信息主导了特征学习器,且使得从背景中选取小目标样本变得极其困难,导致小目标的特征表达呈现弱势。针对现有方法在小目标语义分割上存在的问题,本文研究并实现了基于类别感知的小目标分割算法,在大规模三维点云上首次探索小目标语义分割任务,并选取真实应用对模型展开了探索:第一,本文研究并实现了一个两阶段的小目标分割方法,首次通过设计深度神经网络在大规模三维点云上探索小目标语义分割任务。该方法可以有效地处理大规模点云,学习信息丰富且具有区分度的特征表示。在第一阶段,设计了基于类别感知的点云过滤策略,消除冗余的背景信息;在第二阶段,引入了一种有监督的聚合与采样方案,逐步增加每个三维点的感受野,自适应地从小目标中捕获有用的信号并学习其复杂的几何结构;本文还设计了一个有偏损失函数,有效处理了小目标的稀疏性。在公开数据集上,本文的方法在度量指标下取得了很好的小目标分割性能。第二,本文利用所提出的小目标分割方法,解决了现实世界中的一项应用。在三维领域选取岩栓检测作为小目标分割的实际问题,设计了岩栓检测系统,并将两阶段的小目标分割方法嵌入其中,通过小目标分割模型得出岩栓在隧道中的准确位置。这是利用深度学习技术解决岩栓检测问题的首次尝试。在私有数据集上,大量实验验证了其有效性与优越性。
其他文献
在互联网深刻影响人们生产、生活的时代背景下,网络素养成为公民在网络空间生存发展的必备素养。随着网络空间与现实社会的深入融合,互联网在国家间日渐激烈的竞争中,展示出“兵家必争之地”的态势。2014年,党和政府在掌握时代发展大势和国际局势的基础上,结合自身发展要求和发展目标正式提出了“网络强国”概念。新的发展目标势必带来新的发展要求,如何在新的要求下提升公民网络素养,助力“网络强国”的实现成为学界需要
甲烷无氧偶联(NOCM)是催化领域的重要课题,为甲烷的直接利用开辟了新途径,因其碳原子利用率高、工艺流程短而倍受关注。目前,NOCM反应仍面临着甲烷转化率低、反应温度高、催化剂稳定性差等问题。近年来,熔融液态金属催化剂因其优异的抗积炭性能在多相催化领域引起广泛关注。体相金属W具有高活化甲烷能力但易积炭,低熔点In可大幅减低W的熔点而使其以单原子和/或原子簇的形态存在,进而有可能构建低温高活性、低生
农村居民点是一定规模农村人口根据自然、社会、经济条件及血缘关系集中进行生产生活的场所,其形态受自然、经济社会和政策调控综合影响。伴随新农村建设、新型城镇化和城乡统筹等重大战略的深入推进,中国农村居民点正在不断转型与重构,出现了乡村人口流失的同时农村居民点用地面积反而不断增多的悖象。建设用地扩张势必导致乡村生产空间与生态空间遭受挤压,加剧乡村功能空间结构失衡,引发三生功能产生矛盾冲突,带来生态环境退
在高维情形下关于多元正态分布协方差矩阵的估计一直以来都是统计学中的基础问题。在诸如异常心电图分析这样的实际问题中,我们得到的高维数据只有几个分量是脉冲的,其余分量全是稀疏的。本文将此情形下所对应的协方差矩阵称为Sparse-Spike协方差矩阵。在高维数据处理问题中我们得到的样本数常远小于矩阵维数,本文将小样本情形下对于协方差矩阵的估计和特征提取称为它的低秩学习。本文所研究的Sparse-Spik
商圈是一个城市的商业招牌,也在一定程度上反映了当地经济发展的水平。商圈分析可以帮助国家和地方政府了解商圈发展态势,为制定商圈发展规划和政策导向提供科学依据。另外,商圈分析还能为经营者选择经营场所、制定和调整经营方针和策略提供依据。基于以上背景,本文以上海市商圈为研究主体,基于银联数据,采用统计学方法,对商圈客户转移消费问题进行了深入分析。由于商圈之间的客户转移数量是一个矩阵数据时间序列,并且某些商
相较于单臂机器人,双臂机器人拥有冗余的自由度,能够执行更灵巧的操作和完成更复杂的协同任务。双臂机器人在进行灵巧操作时,末端执行器之间的距离往往非常接近,在对双臂协作机器人进行轨迹规划时,要求提供十分精确的碰撞检测算法,以保证机械臂的安全。针对上述问题,本文对面向双臂协作机器人的连续碰撞检测算法进行研究,主要研究内容为:·提出了一种面向双臂协作机器人灵巧操作的连续碰撞检测算法,该算法基于泰勒模型在机
近年来,深度神经网络在许多分类任务中已经达到了很高的准确率,这些任务包括语音识别,目标检测以及图片分类等。尽管深度神经网络对随机的噪声是具有鲁棒性,但是当对神经网络输入添加一些不能被人眼察觉的特殊扰动会使得深度神经网络模型输出错误的预测值。通常把这些添加了特殊扰动的样本称作对抗样本。为了使得深度神经网络的鲁棒性提升,对于深度神经网络防御对抗样本的方法进行了研究。在对抗防御的方法中包括三种:梯度遮蔽
随着信息技术的发展,图作为一种便捷且有效的建模方式,被广泛用于表示复杂的结构化数据。异常节点检测是图分析领域中的重要课题,在诸如社交网络的恶意账户检测,金融网络的欺诈检测等现实生活中有着广泛的应用。图异常节点检测场景的数据往往具有复杂的拓扑结构关系,传统领域的异常检测方法难以处理复杂的关系,此外,信息多元,标签不平衡等特点也造成现有的异常节点检测算法在性能上不尽如意,影响异常检测任务的表现。为了高
现代人们大部分时间都在室内环境中度过,例如家庭、办公室、购物中心、大学、图书馆和机场。然而,很多现有的基于位置的服务都只针对室外空间而设计,这主要是因为全球定位系统等定位技术无法准确识别室内场馆的位置。然而近年来室内定位技术的突破开始逐渐克服了这一难题,为研究机构、政府机构、技术巨头和有进取心的初创企业带来了巨大的未来机会——可以充分挖掘室内基于位置的服务的潜力。因此,室内数据管理在过去几年中获得
密度聚类被广泛用于模式识别、信息检索、图像分析、复杂网络分析等众多领域来识别真实世界数据集的隐藏结构。目前的密度峰算法往往只能处理结构化的完整数据,很多情况下表现不佳。其一,现实世界中的数据往往存在缺失或错误值,对于这样的不完整数据集,目前的处理方法是进行数据插补,然后采用传统聚类方法进行处理,这样导致精度下降,并且插补后的点的‘聚集现象’可能导致密度峰聚类失效。其二,对于更常见的半结构化数据,往