调整经验欧氏似然及其性质

来源 :广西师范大学 | 被引量 : 5次 | 上传用户:yshanhong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经验似然是近年来非常流行的非参数统计方法之一,它在许多领域都展示了其较强的魅力,得到了较为成功地应用,如计量经济学、生物医学和市场调查等领域。是目前统计理论和应用研究里热门的研究课题之一。本论文在对前人已有研究成果进行综合分析的基础上,主要考察调整的经验欧氏似然。经验似然函数是由Owen(1988)最早提出的,Qin and Lawless(1994)将其方法引入到较为一般的半参数模型中。经验欧氏似然是用欧氏距离代替经验似然中似然距离而得到的一种非参数方法,它具有与经验似然完全类似的性质,因此可以看作是经验似然的一种推广版本。计划针对经验欧氏似然方法理论和应用上的一点不足之处,即凸包限制问题,对经验欧氏似然进行调整并对其性质加以讨论。论文主要借助Chen、Variyath和Abraham(2008)的调整经验似然思想,在半参数模型下,讨论调整经验欧氏似然函数的构造,参数估计(包括点估计和区间估计),分布函数的估计等问题,理论上给出了前述所得估计的极限性质。然后再从小样本方面,通过模拟对所得方法的优越性进行了比较。理论上我们发现,调整的经验欧氏似然与经验似然或经验欧氏似然有完全类似的性质;模拟结果显示,在某些情况下(如二维情况),由调整的经验欧氏似然所得的区间估计具有较好的覆盖率。更为重要的是,调整经验欧氏似然的思想和计算都比较简单。从实用角度看,具有较高的推广价值。本论文特色主要体现在以下几个方面:1.对经验欧氏似然进行调整,得到了调整的经验欧氏似然比统计量,讨论该统计量以及其相应参数估计的渐近性质,如渐近分布,相合性等。这些成果是前人所没有讨论的,是完全新的成果。2.本论文所得的调整经验欧氏似然计算简单,与没有调整的经验似然或经验欧氏似然相比,它没有0点必须落在估计函数g(x1,θ),…,g(xn,θ)内部的要求,对所有情况均有解存在,减少了计算的复杂性。3.在某些情况下,由本文结论所得的估计的置信区域的覆盖率要高于已有的估计方法所对应的置信区域的覆盖率。4.本论文结论可以丰富和完善经验欧氏似然的理论,为实际应用工作者提供简便可行的工具。
其他文献
众所周知,脉冲微分方程经过三十多年的发展,已经形成了比较完整的理论.其理论比相应的微分方程更丰富,而且脉冲微分方程更加准确地刻画了许多自然现象.比如在机械振动、天体力学、经济学、航天技术、反馈控制、生态学以及工程技术等领域都有广泛的应用.因此,脉冲微分方程的周期解的性态研究具有重要的现实意义.对脉冲微分方程在种群动力系统中的应用,本篇学位论文分别讨论了几类含有脉冲时滞效应微分方程动力系统,利用离散
在本文中,我们主要研究了参数集值混合弱向量变分不等式和参数向量优化问题解集的稳定性.本论文总共分为三章,大致情况如下:第一章为绪论,简要介绍了向量变分不等式问题和向量优化问题的历史背景以及发展情况.此外还介绍了本文用到的一些基本概念和基本引理.在第二章中,我们主要研究了有限维空间中参数集值混合弱向量变分不等式解集的稳定性.首先,在映射为严格C-f伪单调和约束集的扰动满足Aubin性质的情况下,我们
建筑防水材料的应用工作取得了诸多突破性的进展,研究者们从建筑构造、建筑结构以及建筑设计等诸多角度来进行建筑防水材料应用策略及原则的研究工作。建筑防水材料在建筑整体设计领域中占据极为重要的地位,同时有效性相对较强,可以延长建筑结构的整体寿命,并且还可以切实解决防水问题以及构造问题,使得建筑防水工程的整体质量得到保障。在本文中将重点针对以上方面进行研究,同时提出具体的应用策略。
向量变分不等式的基本问题之一是解的存在性问题.本文主要利用例外簇的方法去研究向量变分不等式(记为(VVI(K,T)))(?)响量优化(记为(VOP))的解的存在性问题.同时,我们还研究广义向量变分不等式解的存在性问题.具体内容安排如下:第一章,概述向量变分不等式理论和例外簇的历史背景和研究现状,并介绍了本文要用到的一些基本概念和常用记号.第二章,我们在本节主要讨论如下向量变分不等式问题VVI(K,
随着近些年来科技的发展,复杂网络的研究得到很大的突破,随着研究的日益渐深,也使人们发现复杂网络与自然和人类社会的许多方面都密切相关,因此开始受到不同领域的科研工作者的广泛关注。本文叙述了复杂网络的研究发展及其同步的概况,介绍了复杂网络研究中常用的几个重要参量和几个基本的网络模型,基于BA无标度网络模型提出了一个最大度受限的新LBA网络模型,研究了新模型的统计特性,结合振子网络的同步行为比较了新模型
反应扩散系统中螺旋波和时空混沌的控制一直是学者们关注的热点问题,对这些问题研究的兴趣来源于人们在心脏中观察到螺旋波,发现心律失常与心肌中出现螺旋波电信号有关,螺旋波破碎成时空混沌将导致心脏的纤维性颤动,危及生命.因此通过计算机模拟和实验方法去研究螺旋波动力学行为,提出治疗心律失常的方法,对心脏病的防治有重要意义.目前,人们根据螺旋波的特性提出了如空间梯度场扰动、参数扰动、混沌信号控制、反馈控制、周
物理学家基于已经发现了的一系列粲夸克偶素J/ψ、ψ(2S)、ψ(3770)粒子等,想努力寻找到粲夸克偶素家族的新成员。粲夸克偶素是研究和寻找新型强子的理想场所,对其产生和衰变性质的研究对于量子色动力学(QCD)理论的检验和发展具有非常重要的意义。QCD理论是用于描述强相互作用的基本理论,因此对QCD理论的检验和发展对于我们进一步理解自然界中的强相互作用规律有着重要的意义。目前自然界已发现的强子均由
强子之间的相互作用以及新强子态的性质及其内部结构一直是强相互作用领域的重要研究对象。量子色动力学(QCD)作为描述强相互作用的基本理论已被人们普遍接受,但鉴于其自身面临的困难,在实际运用中人们往往借助各种模型和低能有效理论。作为低能有效场论方法,手征微扰论在研究低能强子物理方而获得了很大的成功,很好地解释了Goldstonc玻色子(π、K、η)之间的相互作用。然而由十该方法是基于对介子动量和夸克质
作为一种新型的软材料,近年来分子基磁性材料在材料科学的研究中已成为物理学家、化学家以及生物学家非常重视的新兴科学领域。分子基磁体是指在一定临界温度下具有自发磁化的分子性化合物。分子基磁体的磁性除了具有宏观铁磁性和亚铁磁性外,主要是微观上的分子磁交换作用,具有密度小,重量轻,结构多样性及易于加工成型等特点而且兼具光、电、热、磁等物理性质。因此很可能被应用于微波吸收隐身、制作航天器、电磁屏蔽和信息存储
铁氧体是一种软磁性材料,在电子计算机、信息等领域中广泛使用,如计算机中用来存储信息的磁性心片、电话变压器、电感器、磁记录用的磁头、磁功率放大器、天线用的电芯。NiCuZn铁氧体是其中一种铁氧体,其结构为尖晶石结构,晶粒度接近纳米数量级,其制备温度低,材料居里温度高。磁滞回线小,属于软磁性材料的特征,从磁滞回线变化可以反映出材料中畴壁的移动情况。纳米尖晶石铁氧体的制备方法有球磨法、沉淀、水热法、化学