论文部分内容阅读
微纳结构加工技术作为纳米科技的重要分支,决定了纳米科技在未来的社会生活中的应用与推广。当微纳加工技术在各种材料中的应用都很成熟时,集成电路制造工艺就可以突破当前的瓶颈,达到新的高度。在指定区域和位置可控规格地制备微纳结构是这个领域的关键。原子力显微镜探针是纳米操作加工领域的重要工具,可以实现高精度的定位和检测,其针尖可以进行纳米切割、刻写、液滴操纵、电场辅助加工等,相比于光刻机技术更方便,成本更低。传统的液态金属结构制备受氧化膜的影响,只能达到几十微米的特征尺寸。因此在指定区域制备出特征尺寸更小的液态金属结构便是当前的研究重点。本文在场蒸发的机理下,提出了用原子力显微镜探针来制备液态金属微纳结构的新方法。通过对针尖施加偏压,成功实现了液态金属微纳结构的制备。这种方法可以达到目前该领域所能做到的最小尺度,具有高精度、可控、高效、低成本等优点,在社会生活中的诸多领域有重要的应用价值。首先基于液态金属本身的特性以及当前纳米加工的发展现状,提出了用探针针尖基于场蒸发的原理来制备的方法。运用成像势垒模型和电荷交换模型分析了沉积分配液态金属的过程。对针尖电场分布进行了理论分析。基于此理论提出了液态金属微纳结构制备的具体策略。其次,结合理论分析搭建了液态金属纳米操纵平台,将商用的自感应AFM探针改造成了导电AFM探针。使用Labview编写了上位机控制程序,控制运动平台实现可控规格的液态金属微纳结构制备。实验平台在标定后进行性能检测,达到了商业级原子力显微镜的参数指标。最后,研究了探针蘸取液态金属时的实验过程,通过改变通电时间、通电电压、沉积基底的种类、动态电场参数,分析总结出了各实验参数对液态金属微纳结构制备的影响。对所制备的液态金属微纳结构进行了应用研究,包括纳米平版印刷、纳米数据存储器、硅纳米线的催化生长。