论文部分内容阅读
光纤激光器有着小巧灵活、集成度高的特性,并且可以在不同的色散域下获得光谱性质优越的脉冲激光输出。正因为这些优势,光纤激光器成为了机械加工、生物成像、医疗手术、信息通讯、国防军事等领域的首选工具。目前的光纤激光器主要利用非线性偏振旋转,真实可饱和吸收体,非线性环形镜等被动锁模方式。然而这些传统的锁模手段都被其自身的某些劣势所限制,无法得到大面积的推广应用。因此,对新颖的具有稳定锁模以及良好输出特性的锁模手段的需求不断增加。而除去传统的掺铒光纤激光器以及掺镱光纤激光器以外,新兴的掺铥光纤所处的2微米波段也不断发展。由于2微米波段处于水的吸收峰以及“人眼安全”波段及其他特性,有着广泛的应用前景并因此吸引了许多关注。基于前文所述原因,本论文选取改进的非线性放大环形镜以及掺铥光纤激光器作为研究对象。本论文主要研究工作概括如下:1)对超短脉冲激光的形成机制以及光脉冲在光纤中传播的基本物理过程进行了探讨。介绍了非互易性元件的含义及特点后阐述了加入非互易性元件的激光腔特性改变。2)在不依赖真实可饱和吸收体或其他锁模条件的情况下,只利用非互易性元件在传统“8”字腔结构及“σ”腔中成功获得了远高于传统非线性环形镜重复频率典型值的锁模激光脉冲。提供了利用简单易得的元件实现全保偏光纤激光器搭建的可能。在改进的“8”字腔掺铒光纤激光器中,实现了重复频率为22MHz,平均功率为23.6m W的孤子锁模单脉冲激光光输出,直接输出脉宽为308fs。在改进的“σ”腔非保偏掺铒光纤激光器中,在呼吸孤子锁模域获得了重复频率为80MHz,平均功率为36m W的单脉冲激光输出;在正色散域获得了重复频率为53.6MHz,平均功率为14m W的单脉冲输出。3)利用碳纳米管及半导体可饱和吸收镜在掺铥光纤激光器中成功获得了锁模。并针对不同掺杂浓度、不同纤芯直径的掺铥增益光纤进行了分析。利用碳纳米管在非保偏环形腔中获得了中心频率在1906nm,谱宽2nm的激光输出。利用半导体可饱和吸收镜在全保偏线性腔结构中获得了稳定的调Q激光脉冲输出。在加入偏振保持环形器的环形腔中获得了中心频率在1928nm,谱宽1nm,重复频率28MHz的锁模激光输出。