论文部分内容阅读
功能磁共振成像(fMRI)是一种重要的医学影像技术,以其毫米级高空间分辨率及非侵入等优势,广泛应用于脑科学研究。多被试fMRI数据的组分析能够获得多被试间的共有信息或差异信息,为脑功能研究或脑疾病诊断提供群体性特征。盲源分离方法属于数据驱动方法,只需已知观测信号就能估计出源信号及其混合参数,适于分析脑认知程度有限的fMRI数据。独立成分分析(ICA)、独立向量分析(IVA)和张量分解在组分析上是三种性能互补的盲源分离方法,分别提供被试间平均、差异或共享的脑空间激活图和时间过程信息。然而,fMRI数据本质上是复数数据,被试间存在着较大的空时成分差异,而且模型阶数对复数fMRI数据组分析的影响未知,这些问题导致现有方法性能受限。为此,本文的创新性研究工作如下:(1)针对复数fMRI数据存在的不同独立源成分向量分布差异大、噪声严重和非圆性等问题,提出了一种基于多维广义高斯分布的复数自适应定点IVA算法。首先,构建了一个基于多维广义高斯分布的非线性函数,通过极大似然估计实时更新其形状参数,从而自适应地匹配各源成分向量的分布。然后,在主导子空间更新该非线性函数,实现消噪。最后,在解混矩阵更新中嵌入了混合数据的伪协方差阵,进而引入了复数fMRI数据的非圆性。仿真和实际数据的实验结果表明,该算法显著优于现有方法,特别是在信噪比较低和空时差异变化较大的情况下,获取了更优的空时信息。复数IVA较之幅值IVA提取了更多感兴趣体素(任务相关成分和默认网络成分都增加约三倍之多)。针对现有后处理相位消噪的相位范围固定的问题,基于先验空间成分和相关最大化原则,提出了一种相位范围自适应选取方法,该方法适于任务态数据和静息态数据的后处理消噪,也验证了固定相位范围±π/4的正确性。(2)针对现有张量分解方法不能同时解决被试间空时差异性的问题,提出了两种新算法。其一,以时间移不变CPD引入时间成分的差异性,以ICA引入空间差异性约束,提出了一种时间移不变典范因子分解(CPD)和ICA相结合的算法。该方法先对多被试幅值fMRI数据进行ICA,获取联合混合矩阵;再对该矩阵进行时间移不变秩一估计,获得共享时间成分和各被试特有的时延和强度信息,并由此重构联合混合矩阵,进而采用最小二乘法获得共享空间成分。其二,提出了一种空间源相位稀疏约束的复数时间移不变CPD算法。将实数域时间移不变CPD算法拓展到复数域,引入复数时间成分的差异性;利用复数空间成分所特有的小相位特性,采用一种l0范数平滑函数对大相位体素进行稀疏化,引入空间差异性约束。仿真和实际数据的实验结果表明,这两种算法在空时差异性较大和噪声较大的情况下,均显著优于现有算法。复数张量分解方法较之幅值方法多获得了约两倍的任务相关体素。(3)研究了复数fMRI数据组分析中模型阶数的影响及其成因。首先,提出了一种从多次ICA结果中选取bestrun的改进方法,利用了多成分性能平均和显著性检验综合策略。实际数据的实验结果表明,该方法在所有模型阶数下均优于现有方法。其次,采用所提出的best run选取方法,研究了复数fMRI数据组分析中模型阶数的影响,发现了从低阶到高阶一直存在的复数完整成分,与现有幅值成分在高阶发生分裂的结论迥异。接着,探究了复数完整成分的形成原因,检测了相位数据的模型阶数影响,分析了相位数据的特征值分布,证实了相位数据对幅值数据的补全作用。最后,以默认网络为例,探索了高阶复数完整成分的作用。与高阶幅值成分相比,高阶复数完整成分在健康对照组和精神分裂症患者区分上体现出更为显著的差异,具有作为生物标识的潜力。