论文部分内容阅读
铁路智能运输系统(RITS)是涉及多学科、多专业领域,集底层控制、实时调度、运营管理于一体的多功能、多任务的复杂大型信息系统,系统设计在系统建设中至关重要。随着分布式网络技术的不断发展,铁路运输系统向智能优化、综合交互、动态实现等方向发展,对铁路运输系统的功能和业务覆盖范围等方面提出新的要求,RITS各系统需要能适应需求的调整,实现新业务的快速展开。这对RITS系统的总体规划设计方法提出新的要求。RITS是复杂大系统,针对复杂大系统在规划设计建设中的不确定性和复杂性,需要进一步扩展现有系统优化以及设计理论的体系范畴。如何设计出技术性能好、经济效果优的RITS系统,同时又能支持业务重组、软件重构和动态业务集成,迫使人们研究和探索新的、更加完善的系统设计方法。 本文在《铁路智能运输系统体系框架研究》课题基础上,首次提出RITS物理结构优化设计问题,并从方法论角度对优化设计问题进行了形式化描述,运用系统工程、人工智能、计算机网络等领域的先进理论和方法着重对RITS结构优化设计方法进行了探索,重点研究了三个问题:一是基于模糊聚类的逻辑结构划分,将系统的基本过程聚合为若干相对独立的功能单元,实现了系统不同粒度的分解;二是物理结构优化设计方法,提出了采用多目标优化的解决思路;三是系统应用层容错设计方法。保证系统在局部功能失效或调整时,大系统总体功能的稳定。综合采用上述方法进行系统优化设计,使RITS物理结构具有有效性、经济性、可靠性与可扩展性,提高了系统的适应性和鲁棒性。论文的主要工作及创新点如下: 1、提出了RITS逻辑结构到物理结构层次化优化映射设计思想。为解决RITS规模庞大、系统各要素之间耦合关系复杂、难以实现物理结构优化设计的问题。在实现不同粒度系统分解基础上,进行物理结构优化设计,有效降低了系统设计复杂度。 2、研究了基于模糊聚类的逻辑结构划分方法及“元服务”、“关键路径”的基本概念和提取方法。本文将RITS逻辑结构分析转化为对其同构有向图的拓扑分析,建立了基于模糊关联强度矩阵的RITS逻辑结构模型,定量描述了系统过程之间的关联程度,采用模糊聚类方法将系统划分为若干独立的功能单元,为逻辑结构到物理结构层次化优化映射提供了方法支撑。 3、突破原有RITS设计主要基于软件工程方法的局限,研究了RITS物理结构优化设计基本问题,即在一定资源条件约束下,综合考虑技术、经济等方面因素,实现功能单元在物理实体上的优化配置,并提出了RITS物理结构优化设计问题的模型。 4、研究并建立了比较全面、实用的RITS系统设计层次化评价指标体系和量化方法。评价指标体系能够客观地反映系统的技术经济指标,易于实现系统设计方案的量化评估。 5、初步建立了基于多目标优化的RITS物理结构设计方法,以解决复杂多变量、多目标、