【摘 要】
:
镍钛合金具有优异的形状记忆特性,随着其应用领域的扩展,传统成形工艺难以实现复杂精细结构NiTi合金的成形,而激光选区熔化(Selective Laser Melting,SLM)增材制造技术为复杂结构成形提供了一种新方法。但NiTi合金成分、SLM成形工艺参数对SLM成形NiTi合金的相变温度影响显著,影响规律尚不明确。为此,本文首先研究了NiTi合金成分对SLM成形NiTi合金的相变行为、机械性
论文部分内容阅读
镍钛合金具有优异的形状记忆特性,随着其应用领域的扩展,传统成形工艺难以实现复杂精细结构NiTi合金的成形,而激光选区熔化(Selective Laser Melting,SLM)增材制造技术为复杂结构成形提供了一种新方法。但NiTi合金成分、SLM成形工艺参数对SLM成形NiTi合金的相变温度影响显著,影响规律尚不明确。为此,本文首先研究了NiTi合金成分对SLM成形NiTi合金的相变行为、机械性能及形状记忆效应(Shape Memory Effect,SME)的影响规律;随后研究了SLM成形工艺参数对NiTi合金的相变温度和合金中镍钛原子比的影响规律;基于上述最优合金成分和SLM成形工艺参数,采用SLM工艺成形了三种智能结构,并通电变形验证其形状记忆性能,具体研究结果如下:(1)研究表明随着NiTi合金中Ni元素含量的增加,SLM成形的NiTi合金马氏体相转变温度降低,根据实验结果结合文献数据,拟合得到了Ni原子比影响相变温度的经验方程,因此可通过Ni含量改变控制相变温度,随着Ni含量增加,SLM成形NiTi合金的硬度从372.4 HV增大到724.5 HV,抗压强度从2433 MPa先增加到2765 MPa,再降低到2361 MPa。Ni含量较低时,SLM成形的NiTi合金表现为形状记忆效应,而Ni含量较高时,表现为超弹性。(2)改变SLM成形工艺参数,对富Ni的Ni 51.121 at%-Ti合金成形研究表明:相变温度随激光功率的增加而降低,随扫描速度的增加而升高。进一步,将SLM成形工艺参数综合等效为激光能量密度E,拟合得到了奥氏体转变开始温度As、马氏体转变结束温度Mf的相变温度和SLM激光能量密度E的方程,发现激光能量密度与NiTi合金的相变温度之间存在近似的线性关系,相变温度随能量密度增加而升高。(3)基于上述最优NiTi合金成分和SLM成形工艺参数,根据NiTi合金形状记忆效应设计并成形了抱紧推出、解锁和变形尾裙等典型可变形智能结构,利用电致焦耳热实现了SLM成形NiTi合金的变形,并验证了三种智能结构变形性能。通过本文的研究,明确了NiTi合金成分、SLM成形工艺参数对SLM成形NiTi合金的相变行为及机械性能的影响规律,获得了SLM成形NiTi合金的相变温度调控工艺,为扩展NiTi形状记忆合金应用奠定了基础。
其他文献
由骨肿瘤、人口老龄化、创伤以及交通事故引起的骨缺损正给人们带来疼痛、残疾和丧失劳动力等痛苦,严重降低了人们的幸福指数。支架作为骨组织工程(Bone Tissue Engineering)的重要组成部分,需要有良好的力学性能,生物活性和多孔结构等。为了制备出一种理想的生物陶瓷支架,本文基于数字光处理技术(Digital Light Printing,DLP),对羟基磷灰石复合镁黄长石生物陶瓷(HA-
负泊松比结构受拉膨胀,受压收缩,这种反常的力学响应使其在能量吸收、应力传感和抗压抗阻等领域具有广阔的应用前景。负泊松比结构复杂,传统方法成形面临挑战,而增材制造是成形负泊松比结构的有效方法。但目前增材制造负泊松比结构的发展面临以下问题:(1)增材制造弯曲网格负泊松比结构的力学响应不明;(2)增材制造三维负泊松比结构的研究较少;(3)增材制造负泊松比结构的应用有限。为此,本文主要研究钕铁硼(Nd F
Q690D钢属于低合金高强钢,已在海洋工程、桁架结构等工程项目取得广泛应用,但对于用作桥梁面板钢仍然缺乏相关研究,焊接热影响区的组织和性能以及多层多道焊的焊接工艺参数的确定是工程应用上的难点。因此,开展Q690D钢热影响区组织及焊接工艺参数的研究,对于优化焊接工艺参数,改善焊接质量具有重要意义。采用Gleeble-3500热模拟机对Q690D钢在不同焊接热循环下的组织进行模拟,并对其组织和性能进行
全瓷材料具有良好的美学修复特性和生物相容性,已逐渐应用于义齿修复。钇稳定氧化锆(YSZ)陶瓷同时具有四方相和立方相,具有较高折射率的同时兼具一定的机械强度。凝胶注模成型工艺兼具近净成形、成本低廉、有机物含量少且应用广泛等优点,能够有效发挥YSZ的材料性能。经过合适的工艺所制备的义齿材料,可以满足人们对所修复牙体的仿真性、美观性的要求。本文以纳米5Y-PSZ粉体为原料,探究浆料制备、凝胶固化、干燥、
模具表面的抛光是模具加工过程中的关键工序。目前,由于其型面多为三维曲面结构,型面结构复杂且尺寸大等原因,模具表面的抛光主要以手工操作为主,抛光的效率低,抛光质量也是难以保证。激光抛光是一种利用高能量激光束对材料表面进行光滑处理的技术,相比于传统的手工抛光,具有效率高、非接触以及自动化加工等优势,为解决模具表面的抛光问题提供了一种新的技术手段。本文主要选用NAK80模具钢开展了激光抛光试验,研究内容
在海洋行驶环境中船舶的船体钢板很容易被腐蚀,为了保证船体的航行性能,需要定期通过表面清洗来除去锈蚀,传统的机械打磨、化学酸洗等方法存在诸多弊端,将激光清洗技术引入船舶除锈领域的应用具有节能、环保、高效、可控等优势。本文分别采用1000 W连续激光器和500 W脉冲激光器用于船用结构钢EH36表面激光除锈技术的对比研究,以基材表层C类锈蚀为清洗对象,开展了激光除锈工艺实验与理论模拟方面的研究,为高功
覆盖件早期模面设计需要频繁进行变更更新,主要包括产品形状,冲压方向,压料面,分模线,工艺补充等很多因素。传统方法主要是手工处理设计变更中每个环节的设计内容,造成设计效率低,工作量大,设计异常多,依赖设计经验等问题。由于模面设计的各个环节相互关联,传统方法难以保证设计结果的整体一致性。通用CAD软件由于缺乏对覆盖件模面设计过程的定制化支持,难以实现设计变更后的模面快速设计。因此,目前汽车行业亟需一种
CoCrFeMnNi高熵合金因其多主元的结构组成而具有良好的综合力学性能和广阔的应用前景。准确分析高熵合金在塑性变形和热处理过程中的微观组织演变是实现其在塑性加工领域应用的必备前提。本文系统研究了塑性变形CoCrFeMnNi高熵合金在退火过程中的再结晶和晶粒长大行为,为其组织和性能的调控提供理论依据。通过热分析方法和退火实验研究了不同冷轧变形的CoCrFeMnNi高熵合金的再结晶行为。发现塑性变形
新能源汽车等产业对锂离子电池的性能提出了更高的要求,而电极微结构如活性材料、孔隙率等的分布特性直接影响着电池的性能。明晰电极微结构分布特性及其在电化学过程中的作用机制,对微结构设计与制造优化,提升锂离子电池性能具有重要意义。本文主要研究了锂离子电池电极活性材料和孔隙率的分布特性,及其所导致的电化学过程差异和电池性能变化,主要工作如下:建立了考虑活性材料平面非均匀分布的电化学-并联电路耦合模型,提出
孔洞填充是汽车覆盖件模面设计中的重要内容,直接影响模面设计的整体质量。由于汽车覆盖件产品形状复杂,孔洞填充时存在填充稳定性不高、填充曲面质量不佳等问题。传统方法主要依赖设计人员的经验手工填充复杂孔洞,操作过程重复繁琐,效率低,无法满足模面快速设计和频繁变更的需求。因此,研究一种复杂孔洞快速填充方法,提高复杂填充的稳定性和质量,对于缩短模面设计周期是十分有益的。论文首先针对填充难度大的问题,对复杂孔