论文部分内容阅读
现代轿车电子控制单元多为相互独立的系统,各单元间又往往存在着关联性和时序性的控制需求。如何对这些电子控制系统实施有效、有序和安全方便的集中控制,综合利用它们的信息己成为将电子技术应用于轿车上和轿车技术发展迫切需要解决的理论和应用问题。 本文以多个项目为支撑,特别是在法国洛林国家信息及其应用研究实验室(LORIA:Laboratoire Lorrain de Recherche en Informatique et ses Applications)实验室的技术支持下,针对轿车电子控制系统存在的问题,立足于提高轿车整体性能,基于将轿车中各种独立的功能系统关联信息集中传递和控制的思路,采用当前先进的车载网络,研究轿车信息集中控制系统(CICCS:Car InformationCentral Control System)及其主要关键技术。 在研究CICCS定义、特征和构建准则的基础上,构建CICCS的总体结构和节点结构,通过比较分析,确定了CICCS结构中的网关模型。 提出了CICCS的控制方法——基于规则和分级递阶的控制方法。对于带有轿车信息集中控制器的CICCS两种方法都可以采用;而对于在网关中没有集成轿车信息集中控制功能的系统,只能采用分级递阶控制方法。 在对轿车行驶外控因素进行分类分析的基础上,对交通环境进行了分类,建立了CICCS控制规则的层次结构;在对制动过程进行合理的分解后,研究了轿车直线行驶和坡路行驶时的安全制动距离:提出了轿车撞车、火灾事件的控制规则;以环型交叉路口和非环型交叉路口为例,研究了轿车转向的控制规则,从而说明了CICCS控制规则的产生过程与主要方法。 在对CICCS实时性分析的基础上,结合Bosch公司开发的供不同等级网络通信用的通用工作负荷特性表,设计了若干状态下CICCS需要传递的信息;分别采用RM算法和DM算法分配信息优先级,依此计算出系统的worst-case响应时间,并进行了对比分析。结果显示,当高速CAN(ControllerArea Network)上的速率达到500Kbit/s,低速CAN上的速率达到100 Kbit/s时,不论是采用RM(Rate Monotonic)算法还是采用DM(Deadline Monotonic)算法,所有的信息都能满足其截止期要求。 采用分布式实时系统的可靠性技术分析了CICCS的故障类别和可靠性要求,提出了CICCS的可靠性体系,得出了CICCS的可靠度计算公式。 选用Kvaser Navigator作为CICCS性能分析仿真平台,面向事例,对CICCS进行了实时性和可靠性仿真。其结果验证了CICCS的可行性、实时性和可靠性。对比了下坡行驶时驾驶员和CICCS制动的安全制动距离。计算结果显示,在同等条件下,采用CICCS制动能明显改善轿车的制动情况。