富氮型有机微孔聚合物的制备及其气体吸附性能研究

被引量 : 1次 | 上传用户:dande
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
有机微孔聚合物(MOPs)具有比表面积大、化学和热稳定性良好、骨架密度低和合成策略多样等优点,因此在气体吸附、小分子分离和非均相催化等领域具有广阔的应用前景。有机微孔聚合物材料根据其分子结构的特点,可分为自具微孔聚合物(PIMs)、共轭微孔聚合物(CMPs)、共价有机网络(COFs)和超交联微孔聚合物(HCPs)等。研究表明,在有机微孔聚合物固体吸附剂中引入一些极性的功能基团(如-NH2,-OH,-NO2,-COOH,-SO3H等)可有效提高其对气体(如H2, CH4, CO2)的吸附性能。功能基团
其他文献
随着信息化社会的到来和数字媒体技术的快速发展,抽象的信息能够被很好地处理,成为可感知、可管理和可交互的数字媒体产品。在以人为本的交互设计原则影响下,人的感受越来越受到重视。交互设计的目的是让产品能够更加有效率被用户使用,并让用户在交互过程中得到更愉快的体验。要想做出良好的交互设计,这就要求交互设计师必须先深入地了解和研究用户的认知行为和心理活动等。在笔者查阅的文献资料研究中发现,在心理学词汇中,情
学位
论文依托于国家社会科学基金重点项目“技术创新、专利、标准的协同转化研究(2014AGL003)”完成,旨在对基于标准生命周期的技术标准中的专利许可问题进行分析、探讨与研究。在全球金融风暴、经济危机和产业结构调整的背景下,市场之争已经不再局限于产品、技术、服务之争,越来越多的国家和企业将目标投向技术标准之争。当今国际竞争的成败已经不再仅仅取决于工业时代的土地、劳动力、资本等有形资本,还在于是否把握了
学位
基因治疗在治疗癌症、先天基因缺陷等众多疑难病症方面有着巨大的潜力,基因治疗的基础是优秀基因载体的研发和制备。阳离子基因载体相比于其他基因载体具有易于大量制备、低免疫原性等特性,因而受到了广泛的关注。由于金纳米颗粒具有良好的生物相容性、较低的细胞毒性和独特的物理化学性质,金纳米颗粒(AuNPs)在生物医药方面有广泛的应用。目前,制备基于金纳米颗粒的复合基因载体是研究热点。本工作开发了一种温和简单的方
学位
电化学电容器,也叫超级电容器,因其充放电速度快、循环寿命长、环境友好等优点而备受国际广泛关注。电极材料是决定超级电容器性能的主要因素之一,基于石墨烯为主的超级电容器电极材料具有大的表面积、良好的导电性、独特的导热性和优异的机械性等,是一种具有广阔应用前景的电极材料。但化学还原制备的二维石墨烯材料,片层之间因为具有较强的π-π堆叠和疏水作用,以及单个片层还原伴随着物理交联、范德华力等原因导致石墨烯片
学位
石墨烯具有导电性好、比表面积大及力学强度高等优点,是最理想的电化学电容器电极材料之一。但是,石墨烯易团聚和比电容较低等缺点,大大限制了其在众多领域的广泛应用。因此,研究和开发具有更高比容量、长循环寿命及无粘结剂石墨烯基复合电极材料具有十分重要的意义。此外,随着微机电系统、无线传感网络、便携式电子设备、嵌入式健康监控设备及柔性显示器等的广泛应用,人类对储能器件的要求越来越高。对于能量存储器件不仅要具
学位
超级电容器(Supercapacitor),即电化学电容器,是一种新型的能量存储装置。因其功率密度高、充放电速度快、循环稳定性优异和使用温度范围宽等优点,受到人们的广泛关注。电极材料作为超级电容器的核心部分,决定着超级电容器的主要性能。石墨烯(Graphene)材料具有优异的导电性、超高的理论表面积(2630 m2/g)和稳定的物理化学性能等特点,在超级电容器电极材料方面具有巨大的应用前景。但石墨
学位
淫羊藿是国家卫生部(现国家卫生和计划生育委员会)批准的药食两用植物之一,在食品工业中具有广泛用途。深入探讨淫羊藿的质量控制问题,快速、精确检测淫羊藿营养成分和活性物质,对于淫羊藿保健食品的研制和品质控制具有重要的实用意义。近红外漫反射光谱技术具有快速、精确、灵敏、无损等众多优点,在食品原料与保健食品质量控制中具有广泛的用途。本文探讨了近红外漫反射光谱技术在淫羊藿水分、灰分、黄酮类化合物、多糖和生物
学位
具有高的灵敏度的表面增强拉曼散射(Surface-enhanced Raman Scattering, SERS)光谱可用来鉴别物质分子结构,因而被称做指纹谱,基本原理即入射光入射后会与贵金属表面的近自由电子产生等离子体共振(Surface Plasmon Resonance,SPR)引起局域电场的增强,进而形成增强的光散射信号。SERS技术保持常规拉曼光谱的优势同时,克服了后者拉曼光谱信号强度低
学位
近些年,金属纳米粒子凭借其尺寸较小、比表面积大以及表面化学效能高等特殊性质已经在电磁学、光学、生物医药学及力学等功能材料制备领域内取得瞩目的成果,成为纳米复合材料研究领域的一个新热点。金属纳米复合粒子在纳米材料体系中兼顾到性能差异较为明显的不同纳米粒子组分,在纳米尺度范围内各个组分之间产生相互作用,从而表现出特殊的光、电、磁及力学等优异性能。金属纳米复合粒子的研究主要包括将不同性质体系结构、不同粒
学位
由于特有的比表面积和特殊的孔结构,所以固体吸附材料在气体存储、分离和多相催化等多个领域具有很好的应用前景。在过去几十年中,科学家们不断开拓创新,研究出一系列固体吸附材料,除传统的我们常见的沸石和活性炭以外,还包括金属有机网络(Metal Organic Frameworks, MOFs)和有机微孔聚合物(Microporous Organic Polymers, MOPs)等。其中有机微孔聚合物是
学位