新型稀土氧化物的模拟酶性能研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:czgtbhl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
酶是一类生物催化剂,它们参与生物的新陈代谢和能量转换等多种催化过程,但是天然酶存在价格昂贵、不易储存和易变性等缺点。纳米酶是一类既有纳米材料的独特性能,又有催化功能的模拟酶。纳米酶具有制备简单、酶活稳定和催化效率高等特点,在医学、化工、食品、农业和环境等领域有广泛的应用。纳米酶主要包括各类纳米材料,所以需要研究开发性能优秀的纳米材料,在众多纳米材料中稀土材料表现突出。鉴于此,本文着重研究了二氧化铈和氧化镨两种稀土材料的纳米酶性能,构建了一种氧化镨模拟酶传感体系,深入研究了传感体系的效果,具体研究内容如下:(1)采用水热法合成二氧化铈纳米立方体(CeO2 NC),对其进行改性处理,得到掺杂10%的镨元素的二氧化铈纳米立方体(10%Pr-CeO2 NC),对两种材料进行600℃煅烧处理得到CeO2 NC 600和10%Pr-CeO2 NC 600。对四种样品进行表征及酶活性实验,发现样品10%Pr-CeO2 NC 600表现出了高效的氧化酶活性,样品CeO2 NC 600在清除羟基自由基实验中表现较好。(2)采用水热法合成了具有单晶晶格的氧化镨纳米棒(Pr6O11 NR),对其进行纳米酶活性实验,发现其具备比10%Pr-CeO2 NC 600更高的氧化酶活性,通过动力学实验发现,Pr6O11 NR的米氏常数(Km)值为25.9μM,其Km值低于迄今为止报道的纳米二氧化铈和绝大多数具有氧化酶性质的纳米材料。利用草酸钠等捕捉剂探究了其氧化反应的机理,推测其反应机理是空穴中电子转移引起的氧化反应。(3)使用Pr6O11 NR在pH 4.0,5.0和8.5缓冲溶液里探究其对多巴胺聚合反应的影响,发现其在酸性条件下可以聚合多巴胺生成聚多巴胺,并且在碱性条件下可以增强多巴胺的聚合。构建Pr6O11 NR-TMB体系,使用该体系进行半胱氨酸的检测,其在半胱氨酸浓度0-10μM范围内呈线性关系(R2=0.99),且检测限为2.3 n M,低于近年来报道的其他半胱氨酸传感方法。另外,使用Pr6O11 NR-TMB体系对氟离子进行检测,其在氟浓度0-100μM范围内趋近于线性关系(R2=0.99),且检测限为0.29μM,该检测限比世界卫生组织推荐的饮用水指南(79μM)低272倍。Pr6O11 NR-TMB体系成功用于半胱氨酸和氟离子的检测,为Pr6O11 NR纳米材料的应用提供了更多的可能性。
其他文献
癌症是危害人类生命健康的重大疾病,药物治疗(化疗)是治疗癌症的重要手段之一,抗肿瘤药物的毒副作用是影响临床化疗效果的主要因素。抗肿瘤药物在肿瘤部位定位递送和精确释放,是提高抗肿瘤药物疗效、降低毒副作用的重要方式,也是目前抗肿瘤药物研发的重要内容。然而,如何实时在线精准示踪抗癌药物的递送过程、靶向释药过程以及生物分布与代谢是迫切需要分析与解决的难点和核心问题。中国科学院兰州化学物理研究所研究员
期刊
煤、石油、天然气等传统化石能源的过度开发与利用,使人类社会出现了能源枯竭、环境污染、全球变暖等诸多严峻的社会问题。因此,大力发展新型可再生资源对实现可持续发展具有重要意义,其中太阳能因其储量丰富且易于实现产业化和商业化而得到了广泛的应用。染料敏化太阳能电池(DSSCs)作为一种极具潜力的新型光电转化装置,自出现以来便受到了广泛的关注。而染料敏化剂作为DSSCs光电转化的关键材料,在DSSCs研究工
氧化石墨烯(Graphene oxide,GO),作为一种新型的二维纳米材料,具有超薄的片层结构、良好的亲水性能以及优异的机械性能等特点,在膜分离领域具有巨大的潜力,尤其在水处理领域,具有很大的研究空间。本论文通过在GO层间引入有序孔材料以克服其层间距不均一且遇水膨胀的问题,制备了两种基于氧化石墨烯的复合膜,并对这些膜材料进行了一系列的性能表征:X-射线粉末衍射、扫描电镜、透射电镜、原子力显微镜、
金属-有机框架物(MOFs)和共轭微孔聚合物(CMPs)均具有永久孔径、高比表面积、可设计和易修饰的特点。不同的是MOFs含有配位的金属离子和可解析的晶态结构,CMPs则是由共价键构成的具有大π-共轭骨架的无定型材料。这两类材料各具优势,如何开发更具特色和功能的新型MOFs和CMPs材料已经成为一个研究热点。共轭噻吩类化合物具有出色的光学和电学性质,将噻吩功能基团引入结构设计中有望获得新型MOFs
有机反应应用于高分子合成是高分子化学的重要的研究方向之一,其中,碳-碳键生成的有机反应为高分子合成方法的拓展提供了重要途径。Barbier反应作为一类经典的碳-碳键生成反应,在有机合成领域应用十分广泛,但其在高分子合成领域的应用还鲜有报道。此外,Barbier缩聚反应的反应底物种类及参与反应的金属种类研究较少,还需要进一步探究。材料在加工或者使用过程中会产生不易被发现的微裂纹,微裂纹的存在可能会降
在新能源逐渐取代传统能源的时代,锂离子电池作为一种新能源发展起来,被广泛应用于我们的生活中,是我们日常生活中不可缺少的一部分。但是锂电池在低温下的使用,出现了一系列的问题,比如,其容量衰减严重、使用寿命缩短等。解决锂电池的低温性能,使其在较为恶劣环境下仍能正常使用,是当前研究的重点。电解液被称之为电池的血液,在锂电池的电化学性能中起着至关重要的作用,由于电解液的粘度在低温下不断增加并且电导率降低,
5-羟基-γ-癸内酯是本课题研究过程中发现的一种新颖物质。结构相近的γ-癸内酯现已被美国FDA认定为食品香料添加剂,应用广泛;同时部分内酯类物质作为菌落群体感应的信号分子的研究也十分广泛。但关于5-羟基-γ-癸内酯的研究较少,本文主要围绕5-羟基-γ-癸内酯的发现及其代谢途径展开研究。利用Bacillus sp. 1s-1发酵产生5-羟基-γ-癸内酯,通过化学反应合成内酯验证并绘制了标准曲线,对产
二苯基甲烷二异氰酸酯(MDI)是生产聚氨酯最重要的原料之一。由于其强反应性和高毒性,MDI与各类酸碱盐、氧化剂、醇和金属合金共存时会快速反应产生热量或者形成高压。鉴于国内发生过的MDI爆炸事故,造成严重的伤亡后果及巨大的经济损失,选取MDI作为研究对象,采用实验和模拟的方法研究MDI的热危险性。选取差式扫描量热仪(DSC)和热重分析仪(TG)对纯MDI和杂质与MDI混合物进行热分解特性实验研究。纯
改革开放以来,我国经济处于飞速增长的阶段,产业结构的转变和大量外来的务工人口加快了城镇化的进程,城市用地范围不断由中心向外扩张,原本远离城市位于郊区的石油化工企业开始与城市融合,炼厂周边的空地被开发,建立起了住宅区、商业区、生活区等人口众多的建筑与设施,导致了城市型炼厂的出现。城市型炼厂与周边居民的矛盾日益加深,所面临的最主要的问题就是炼厂与周边敏感区域的距离过近,没有设立足够的外部安全防护距离。
由于中国经济的快速腾飞和城镇化进程不断加快,人口生活区越来越集中,郊区这一概念已经与十数年前完全不同。市区面积的扩大将原本是空旷郊区的地理区域变成了存在大量人口居住的生活区,同时将原本位于这些郊区的石油炼化企业“包围”了起来,形成了一种特殊的现象,即城市化炼厂。而作为石油化工企业,城市型炼厂不可避免地具有高风险特征,给周边居民和环境带来了极大的威胁和安全隐患。研究安全管理水平的评估方法和提升策略可