【摘 要】
:
随着全球气候变暖和能源危机的日益严重,可再生能源以其绿色低碳的特点成为各个国家能源发展的重要方向。可再生能源中,风能因其自身清洁性以及经济性成为新能源的发展方向。我国风能技术取得了长足进步的同时,风电场以及风机总量也与日俱增。其中,海上风电能资源相比于陆地能源资源更加丰富,且不占用土地资源,是目前新兴的热门新能源行业,我国已经建造诸多海上风电场,具有良好的应用前景。海上风电基础结构在服役期间会受到
论文部分内容阅读
随着全球气候变暖和能源危机的日益严重,可再生能源以其绿色低碳的特点成为各个国家能源发展的重要方向。可再生能源中,风能因其自身清洁性以及经济性成为新能源的发展方向。我国风能技术取得了长足进步的同时,风电场以及风机总量也与日俱增。其中,海上风电能资源相比于陆地能源资源更加丰富,且不占用土地资源,是目前新兴的热门新能源行业,我国已经建造诸多海上风电场,具有良好的应用前景。海上风电基础结构在服役期间会受到多种环境因素作用。特别是建造在我国渤海和北黄海北部的海上风电场,在冬季海面结冰时,海冰与风电基础结构相互作用,会产生显著的冰激振动,引发结构失效风险和疲劳损伤。针对冰区风电基础结构在服役期内的结构风险开展评估,并合理地制定维护检验计划,有助于降低维护成本,增加结构安全性能。为此,本文采用基于风险的检验方法,开展冰区风电基础的结构完整性管理研究。该方法是在综合考量结构设计、建造和外部环境数据的基础上,对风电基础结构进行疲劳损伤、极限强度、失效风险等方面进行科学评估,并基于评估结果制定检验和维修计划的系统解决方案。该方法可以对海上风机结构从初始结构设计和服役期间的全部相关数据进行管理,建立科学评估方案以及检验计划,从而在保障结构安全的同时降低维护运行成本,为冰区海上风电基础结构的安全提供有力保障。本文以冰区海上风电基础结构为研究对象,针对结构完整性管理流程开展分析。首先,通过对海冰参数的统计分析,采用离散元方法构建海冰与风电基础结构的相互作用得到冰载荷时程曲线,并利用时域分析方法,选取Miner线性累积损伤原理对结构的疲劳寿命开展评估。在得到结构的疲劳寿命后利用等效Weibull分布和极限状态方程对结构的疲劳失效概率进行计算。根据结构的环境数据对结构的环境载荷进行分析,利用静态推倒法以及两倍弹性准则对结构的极限承载能力开展评估,并建立结构极限承载力随疲劳损伤积累的变化模型,从而得到结构的强度失效概率估。在对结构强度失效概率以及疲劳失效概率计算完成后,选取完整性管理中基于风险的定量评估方法,定义强度失效概率和疲劳失效概率为结构服役期间的风险,形成结构的风险矩阵。最后根据结构的风险矩阵对结构制定合理的检验计划,形成以风险为基础的完整性管理系统。
其他文献
国家和社会的需要引导着工程建设的发展方向,21世纪将由地面空间的繁荣昌盛转化为地下空间的利用与高速发展。随着地铁基坑开挖的深度不断增加,开挖面临的地质条件也更加恶劣,开挖到岩石层的基坑工程大多采用了爆破施工。岩石爆破不可避免地会对周围环境产生一定的影响,因此在工程中,对于爆破产生的冲击波、飞散物等对建筑结构产生的危害必须严格控制。微差爆破又称为毫秒爆破,孔间毫秒延时间隔的长短是影响微差爆破效果的重
先进复合材料作为主承力结构应用于大型客机机身已成为今年来的发展趋势。复合材料加筋壁板作为复合材料应用在飞机上的典型结构之一,研究其稳定性和承载能力对于飞机飞行使用安全有十分重要的意义。目前预测加筋板的承载能力的手段通常为有限元方法和工程计算方法。有限元方法能预测加筋板后屈曲路径与失效状态,但计算成本高、耗时长,工程计算方法效率高但精度低。为方便设计人员在设计初期快速预测加筋板承载能力和优化结构,论
软物质材料是由高分子聚合物与溶液分子所组成的混合弹性体,在生产生活中随处可见,如花瓣、水果、生物组织器官等。软物质材料具有多种优良特性,在工程上被广泛应用,而软物质器件的断裂破坏威胁着人们的生命财产安全。因此,软材料的断裂失效问题受到国内外学者的广泛关注。软物质材料的断裂破坏不遵循线弹性、小变形等假设,使用传统方法对软物质的断裂破坏研究受到很大限制。近场动力学理论(Peridynamics,PD)
作为新兴的肿瘤治疗技术,磁流体热疗具有适形性好及靶向性高等优点,但热疗温度场的精确调控是该技术临床应用的难点之一。低居里点纳米颗粒在温度接近居里点时产热能力逐渐减弱,可以实现自主控温,防止肿瘤过热,具有临床应用潜力。温度场数值模拟是制定磁流体热疗治疗方案的常用指导方法,具有周期短和成本低的优点。然而由于低居里点纳米颗粒的比损耗功率(specific loss power,SLP)与温度(T)之间的
航空航天科技的发展,对长寿命、高精度轴承的需求日益迫切。轴承保持架是高精密轴承的核心部件之一,其性能直接影响轴承的性能和使用寿命。聚酰亚胺(Polyimide,PI)是一种广泛应用于高端空间轴承保持架制造的工程塑料,依据不同的用途分为致密PI、多孔PI以及PI复合材料。致密PI保持架力学性能好、使用温度范围广;多孔PI保持架经过真空浸油能够实现空间条件下的轴承自润滑,延长轴承使用寿命;添加PTFE
关节软骨是关节面分散压力和减少摩擦的重要结构,但是关节软骨的自我修复能力有限。由于水凝胶与软骨性能相似,用水凝胶作为人工软骨替代材料成为修复软骨缺损的新方向。但是水凝胶的力学性能通常较差,难以替代关节软骨的承载功能。此外,如何将水凝胶固定于缺损处,实现水凝胶与宿主组织的一体化融合也需要深入探究。本文以聚乙烯醇PVA和丙烯酰胺AAm作为双网络的聚合物基底,用琼脂糖AG对水凝胶进行增强改性,制备得到的
预测人体骨骼的生物力学性能(例如刚度、强度)对于骨质疏松症的诊断、预防和早期治疗具有重要意义。目前,从双能X射线骨密度仪获得面骨密度测量法和从定量计算机断层扫描获得的体骨密度测量法(BMD)广泛应用于临床。然而上述方法并不包含骨骼的微观信息,仅仅通过骨骼密度的数据不能很好地预测骨骼的机械性能。本文通过结合卷积神经网络与有限元计算获取骨骼的力学性能,进一步利用卷积神经网络的计算能力,开发出一种设计骨
本文将人工智能技术应用于试井解释模型识别-试井参数解释全过程,提出一种基于人工智能技术的试井解释方法。基于数值模拟方法和专家标定结果构建试井模型-试井曲线特征对应关系样本池,在训练随机森林机器学习模型的基础上识别试井模型,利用拉丁超立方抽样方法建立参数集合,结合数值模拟技术建立试井模型数据集,通过集合卡尔曼滤波(EnKF)方法,对实测试井数据进行自动拟合,反演估计试井解释参数。实例研究表明,随机森
甲醇作为一种极具潜力的低碳替代燃料,近年来受到广泛的关注。小功率甲醇发动机一般采用单一甲醇燃料火花塞点火方式;大功率甲醇发动机对点火能量需求更高,需要采用柴油微喷引燃甲醇或者甲醇/柴油掺烧方式。高水平甲醇单一燃料发动机和甲醇-柴油双燃料发动机研发都需要对甲醇燃烧过程进行准确的数值模拟,以此为基础优化燃烧,提高性能,减少排放。甲醇燃烧数值模拟通常通过三维CFD耦合化学反应动力学进行。可见,构建准确反
轴流压缩机是工程中重要的旋转机械,通过叶轮转动做功实现工质压缩,在石化、化工、航空等领域的过程工艺和能源储运中有着广泛应用。轴流压缩机的叶轮叶片为细长型薄壁结构,在旋转时易因离心力作用和气流激振而产生振动。与机械载荷不同,叶片气动载荷是宽频脉动激振力,且存在较强的紊乱性质,其诱发的振动可视为随机振动。为确保轴流压缩机的安全可靠性,在设计阶段应开展振动响应分析,准确预测其运行阶段动力学响应。为此,有