关节软骨替代用聚乙烯醇水凝胶的力学性能调控

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:lyhmj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
关节软骨是关节面分散压力和减少摩擦的重要结构,但是关节软骨的自我修复能力有限。由于水凝胶与软骨性能相似,用水凝胶作为人工软骨替代材料成为修复软骨缺损的新方向。但是水凝胶的力学性能通常较差,难以替代关节软骨的承载功能。此外,如何将水凝胶固定于缺损处,实现水凝胶与宿主组织的一体化融合也需要深入探究。本文以聚乙烯醇PVA和丙烯酰胺AAm作为双网络的聚合物基底,用琼脂糖AG对水凝胶进行增强改性,制备得到的PVA-AAm-AG水凝胶具有0.63 MPa的拉伸模量和10.8 MPa的拉伸强度极限,具有1.19 MPa的压缩模量和8.87 MPa的抗压强度极限,与关节软骨的力学性能匹配。疲劳测试中1000次循环加卸载后水凝胶中未观察到裂纹,且在0.25应变时应力相比疲劳实验前仅降低1.5%,说明水凝胶具有良好的抗疲劳性。体外软骨细胞共培养实验表明材料具有良好的细胞亲和性。当替代水凝胶具有合适的多孔结构时,可以诱导细胞向水凝胶中生长,使替代材料和生物组织形成生物固定,实现结构的一体化融合。但是多孔结构会导致水凝胶的力学性能大幅下降。当替代材料在生物体内时,体液环境会使水凝胶溶胀,溶胀状态会导致水凝胶力学性能的进一步下降。因此,研发出溶胀状态下与关节软骨具有相似力学性能的多孔水凝胶仍是一个难题。在前一章的强力学性能的水凝胶基础上,利用二氧化碳作为结晶的晶核,在冷冻循环过程中引导水分冻结为冰晶,为水凝胶进行制孔,制得了具有100-200μm孔径,70%孔隙率的多孔结构水凝胶,该多孔结构适合软骨细胞生长和分化。多孔水凝胶在溶胀状态下具有0.54 MPa的压缩模量,满足天然软骨(0.51-1.82 MPa)的要求。为仿生天然软骨的各向异性结构,提出一种制备具有方向性纤维状微结构的聚乙烯醇-琼脂糖水凝胶的制备方法。依靠琼脂糖分子的交联特性,在前驱液中形成大分子糖链,利用前驱液的流动性产生方向性,在冷冻循环的过程中聚乙烯醇围绕琼脂糖的糖链进行结晶,形成了具有方向性的纤维状微观结构的水凝胶。拉伸实验说明在水凝胶条纹方向沿拉伸方向时,水凝胶的拉伸性能提升明显。各向同性的水凝胶具有0.21 MPa的拉伸模量和0.89 MPa的拉伸强度极限,断裂应变为226%,而相同材料配比的各向异性水凝胶在沿条纹方向具有0.36 MPa的拉伸模量和1.70 MPa的拉伸强度极限,断裂应变也提升至345%,这说明方向性纤维状微结构可以有效提升水凝胶的抗拉伸性能。
其他文献
本文以镍/碳化钨(Ni-WC)粉末材料作为研究对象,采用爆炸压焊-扩散烧结法制备镍/碳化钨金属复合涂层材料。爆炸压焊-扩散烧结法是多种爆炸加工方式的有机结合,该方法不需要专门设备,具有很高的工作效率,且制备出的复合材料质量高,是一种操作简单且发展前景广阔的爆炸加工方法。在本文中,对爆炸压焊-扩散烧结法的基本工艺流程进行了介绍,对还原烧结、爆炸压焊、扩散烧结这三方面的基本原理进行了详细阐述。在还原烧
学位
联轴器是连接旋转机械中主动装置与从动装置,从而传递扭矩的关键部件。在众多种类的联轴器当中,航空渐开线花键副凭借其优异的力学性能,在航空发动机的大扭矩传递和高精度装配的复杂载荷工况下表现尤为出色,因此在航空发动机领域具有非常广泛的应用。航空花键副的性能是决定航空器传动系统是否安全可靠的关键,过载会影响航空花键副的寿命,甚至可以直接造成航空花键副的断裂失效,进而对整个航空传动系统造成威胁。因此确定航空
学位
拓扑优化因能够帮助设计人员获得新颖的设计结果,已成为航空航天、交通运输等邻域中的关键设计技术。然而实际工业生产中,由于结构复杂、精细化程度高,且各个部件之间的特征尺寸差异较大,加之对于结构响应分析的精度及设计分辨率往往有较高的要求,有可能导致较大计算规模,给优化问题的可求解性带来一定挑战。目前,冗长的设计周期及高额的计算耗费已成为制约拓扑优化应用的重要因素之一。传统的拓扑优化方法大多使用固定欧拉网
学位
随着居民汽车拥有量大幅上升,交通事故也逐渐增加,因而汽车安全问题越来越受到关注。金属薄壁结构的吸能盒作为一种常用的吸能装置,广泛用于汽车的设计中。其原理为在汽车碰撞时吸能盒会发生塑性褶皱变形,从而吸收大量碰撞能量。目前,常用吸能盒的制作方式为预制初始形状、压痕开孔或附加挡板结构等。这些吸能盒确实可达到能量吸收的效果。然而,上述制作方式在一定程度上会改变结构的外观和完整性,降低整体强度以及增加加工工
学位
结构安定分析是结构设计和完整性分析的一个重要问题。为了提高结构的承载能力,应允许结构进入塑性,这就要考虑结构的安定性分析。虽然学者们经过多年的研究,已经发展了多种基于经典安定性分析理论的安定性分析方法。但这些方法仍存在计算效率较低,不能应用于大规模工程结构等问题,本文提出并发展了一种将原对偶本征应力驱动算法(PEM)和基降阶法结合的高效安定性分析数值方法,主要内容如下:首先介绍了经典安定理论及安定
学位
国家和社会的需要引导着工程建设的发展方向,21世纪将由地面空间的繁荣昌盛转化为地下空间的利用与高速发展。随着地铁基坑开挖的深度不断增加,开挖面临的地质条件也更加恶劣,开挖到岩石层的基坑工程大多采用了爆破施工。岩石爆破不可避免地会对周围环境产生一定的影响,因此在工程中,对于爆破产生的冲击波、飞散物等对建筑结构产生的危害必须严格控制。微差爆破又称为毫秒爆破,孔间毫秒延时间隔的长短是影响微差爆破效果的重
学位
先进复合材料作为主承力结构应用于大型客机机身已成为今年来的发展趋势。复合材料加筋壁板作为复合材料应用在飞机上的典型结构之一,研究其稳定性和承载能力对于飞机飞行使用安全有十分重要的意义。目前预测加筋板的承载能力的手段通常为有限元方法和工程计算方法。有限元方法能预测加筋板后屈曲路径与失效状态,但计算成本高、耗时长,工程计算方法效率高但精度低。为方便设计人员在设计初期快速预测加筋板承载能力和优化结构,论
学位
软物质材料是由高分子聚合物与溶液分子所组成的混合弹性体,在生产生活中随处可见,如花瓣、水果、生物组织器官等。软物质材料具有多种优良特性,在工程上被广泛应用,而软物质器件的断裂破坏威胁着人们的生命财产安全。因此,软材料的断裂失效问题受到国内外学者的广泛关注。软物质材料的断裂破坏不遵循线弹性、小变形等假设,使用传统方法对软物质的断裂破坏研究受到很大限制。近场动力学理论(Peridynamics,PD)
学位
作为新兴的肿瘤治疗技术,磁流体热疗具有适形性好及靶向性高等优点,但热疗温度场的精确调控是该技术临床应用的难点之一。低居里点纳米颗粒在温度接近居里点时产热能力逐渐减弱,可以实现自主控温,防止肿瘤过热,具有临床应用潜力。温度场数值模拟是制定磁流体热疗治疗方案的常用指导方法,具有周期短和成本低的优点。然而由于低居里点纳米颗粒的比损耗功率(specific loss power,SLP)与温度(T)之间的
学位
航空航天科技的发展,对长寿命、高精度轴承的需求日益迫切。轴承保持架是高精密轴承的核心部件之一,其性能直接影响轴承的性能和使用寿命。聚酰亚胺(Polyimide,PI)是一种广泛应用于高端空间轴承保持架制造的工程塑料,依据不同的用途分为致密PI、多孔PI以及PI复合材料。致密PI保持架力学性能好、使用温度范围广;多孔PI保持架经过真空浸油能够实现空间条件下的轴承自润滑,延长轴承使用寿命;添加PTFE
学位