【摘 要】
:
随着水下应用对可靠、快速和高效通信的不断需求,近年来水下可见光通信吸引了越来越多的关注。而在LED可见光通信中存在调制带宽有限的缺点,引入高通信速率和频谱利用率的OFDM调制技术可以改善这一缺点。水下光OFDM系统需要准确的信道状态信息(Channel State Information,CSI)进行信道均衡,但水下环境下信道条件复杂,准确的水下信道估计仍然具有挑战性。因此本文基于DCO-OFDM系统对水下可见光通信信道估计算法进行相关研究。主要工作内容如下:
(1)本文首先详细介绍了DCO-O
论文部分内容阅读
随着水下应用对可靠、快速和高效通信的不断需求,近年来水下可见光通信吸引了越来越多的关注。而在LED可见光通信中存在调制带宽有限的缺点,引入高通信速率和频谱利用率的OFDM调制技术可以改善这一缺点。水下光OFDM系统需要准确的信道状态信息(Channel State Information,CSI)进行信道均衡,但水下环境下信道条件复杂,准确的水下信道估计仍然具有挑战性。因此本文基于DCO-OFDM系统对水下可见光通信信道估计算法进行相关研究。主要工作内容如下:
(1)本文首先详细介绍了DCO-OFDM系统的技术原理,然后对光在水下传播所受到的吸收与散射相关影响进行分析。根据光的水下传输特性结合比尔-朗伯定律建立水下光通信信道衰减模型。最后,在此模型基础上,进行线性处理得到相应的信道频域响应模型。
(2)基于导频的DCO-OFDM系统信道估计算法研究。首先研究了基于导频的DCO-OFDM系统的传统信道估计算法,如:LS算法、LMMSE算法、SVD算法,并对上述几种算法进行了仿真分析和性能对比;之后,根据DCO-OFDM系统的特点,利用信道频域响应的共轭对称特性,给出了适用于该系统的DFT信道估计算法;之后改进了DFT水下光信道估计算法,该算法利用噪声功率设定阈值,消除了循环前缀内噪声影响,降低传统估计算法复杂度并提升了估计精度。
(3)基于压缩感知的水下光通信信道估计研究。针对LS信道估计算法导频开销大和DCO-OFDM系统频带利用率低的问题,给出了DCO-OFDM系统基于压缩感知多路径匹配追踪(Multipath Matching Pursuit,MMP)的水下光信道估计方法。通过利用DCO-OFDM系统导频的频域响应构建压缩感知模型,将MMP算法用于水下光信道估计中,进而估计出信道时域脉冲响应,从多个候选集中选取残差最小的作为最终支撑集,可以有效提高重构性能。仿真结果表明,在DCO-OFDM系统中,与LS算法相比,该算法节省导频数目且估计性能更好;导频数目较少时,其估计精度优于传统的正交匹配追踪算法。
其他文献
雷达目标检测技术在无人机检测、智能驾驶等领域具有广泛的应用,但检测无人机、地面行人等此类目标时,一方面实际检测环境复杂,待检测目标常受到强背景杂波的影响,另一方面运动目标速度慢、目标雷达截面积(Radar Cross Section,RCS)小,导致其回波能量微弱,极易被淹没在强杂波中,难以对其进行有效检测。因此,如何有效地抑制杂波,以提升在强杂波环境下慢动目标的检测性能,具有非常重要的意义。本文针对在零频地杂波及低频杂波严重的环境中,如何进行慢动目标的检测问题,重点讨论了基于子空间方法的杂波抑制算法,并
摘 要:现阶段社会进步发展,所以当代的造船业有了很大的变化,一艘船的居住空间是轮船建造及其设计的一个重要组成部分。因为轮船经常在海上航行,所以变化莫测的海洋气候以及一些极端的海况对轮船居住内部环境的影响很大,由于轮船自身的特点也对能否创造出合适的居住环境带来很大的影响。本篇文章将通过居住空间设计的原理以及要求,分析液货船的居装设计。因此,能否改变居住环境达到合适的程度,同时也是看能否提高液货船的工
多核处理器有效提高了任务调度的并行性,但核间通信开销也成为影响系统运算性能的主要因素。当具有数据关联性的任务在多核处理器上并行调度时,需要通过核间通信网络传输相关联数据,期间产生的通信开销对系统调度性能造成负面影响。目前,多核处理器任务调度研究中所面临的挑战是如何协同调度计算任务和通信任务,优化调度性能。由于通信任务调度与核间通信网络架构紧密相关,因此本文针对关联任务在总线架构多核处理器和全连接架构多核处理器的调度问题展开研究。
基于关联任务在总线架构多核处理器的调度特征,本文提出一种关联任务调
随着信息技术的飞速发展,所产生的数据量也在呈几何级数增长。这些数据不仅规模庞大,类型多变,还存在复杂的空间结构。传统的数字信号处理方法虽然已经取得长足的发展,但在处理这类数据时依然存在自身的局限性。这类数据的处理需求也催生了新的研究领域——图信号处理。在图信号处理中,数据的空间拓扑结构被抽象为由顶点和边构成的图,边权值表示顶点间的相关性,图上各个顶点映射得到的值就是图信号值,因此图信号包含了数据的空间结构信息。获取数据的空间结构就是图学习问题,这也是进行图信号处理研究的第一步。当前许多图学习问题都是建立在
近年来,视频监控已经成为保障城市安全的主要技术手段,对监拍设备抓拍到的人脸图像进行识别也已成为人脸图像处理的重要内容。目前,正脸图像的识别技术已然获得了极佳效果和广泛应用。但在非配合无感视频监控场景下,往往需要根据一幅或多幅具有姿态变化的侧脸图像进行人脸识别。针对该问题的一个解决思路,是将多幅侧脸图像转换为单幅正脸图像,再应用正脸识别技术进行识别。在此应用背景下,本文针对多幅侧脸图像与侧脸序列图像两种不同应用场景下的正脸图像重建问题,根据不同姿态的侧脸图像间具有相关性与互补性的特点,建立了基于深度融合网络
随着信息时代的不断发展,低空超低空目标渐渐占据了重要的地位,这类目标会对公共安全产生极大的影响。MIMO技术始于通信领域,由于其多方面的优点,被引入了无线雷达领域,并以迅雷不及掩耳之势成为了研究的热门。然而,基于MIMO雷达的低空超低空目标检测技术初露头角,同时低空探测时会面临多径效应所带来的影响,导致接收到的回波信号出现起伏,从而令雷达的检测性能猝然下降。针对低空目标的检测而言,OFDM-MIMO雷达具有较好的检测性能,但是由于OFDM-MIMO发射的信号频率具有正交性,会丢失部分信息,其检测性能难以获
超宽带穿墙雷达由于其强穿透性,高分辨率等特点,得到了科研界和工业界的广泛关注和研究,在公共安全、搜索救援和敌情侦察等领域具有重要的作用。近年来,在穿墙雷达成像中,由于目标具有稀疏特性,因此引入压缩感知理论研究了大量的稀疏成像方法。然而,这些方法存在计算复杂度高、所需内存大、成像时间长等问题。此外,在墙体参数未知的情况下,采用现有的稀疏成像方法难以实现对目标的正确定位和清晰成像。本文针对上述问题,做出以下研究:
1、针对现有的稀疏成像计算复杂度高和所需内存大的问题,提出一种基于MM优化的TV-MA
行人重识别(ReID),旨在给定查询对象的情况下,在大型数据库中检索指定行人的图像。近年来,随着大规模数据集的出现,以及特征提取和度量学习方法的不断进步,单域下的行人重识别已经取到了巨大进展,然而,直接将单域训练的模型应用到具有大型摄像机网络的现实环境中通常会导致较差的性能。
针对上述情况存在的不足,本文采用基于深度学习技术对跨域行人重识别的方法进行研究。主要利用深度学习的技术及相关算法,对跨域ReID的自适应能力、模型尺寸和准确性进行研究。首先,提出一种增强跨域行人重识别中的域自适应性方法,该
近几年,视频图像业务已经成为人们生活工作中的主要通信方式之一,随着拍照设备的快速更新以及人们对视觉品质要求地逐步提高,图像数据量呈爆发式增长,因此寻求更高效的图像压缩编码技术刻不容缓。稀疏表示目前得到国内外众多学者的广泛研究与认可,并在图像编码方面取得了一定的成果。基于图像稀疏表示的图像编码主要原理是利用图像稀疏表示算法灵活的构造基于图像内容的字典,提高压缩性能。
本文研究了基于高阶自组织映射神经网络(HighorderSelf-OrganizationMapping,简称SOMN)算法的图像稀
摘 要:社会时代的发展促使室内装饰设计这个行业也在悄悄发生改变,为了迎合市场需求,设计人员需要将自己的设计理念围绕以人为本展开,只有不断创新并探索全新的设计思路,才能体现出设计的生活化以及未来性,同时还能体现现代化的设计精神。基于此,文章对当前的建筑室内装饰设计状况展开探讨,然后提出一些设计方面的创新要点和发展思路。 关键词:室内设计;建筑;创新思路;装饰 通常情况下,室内装饰设计被归类在设计