论文部分内容阅读
聚四氟乙烯(PTFE)因其具有优异的自润滑性、耐腐蚀性及使用温度范围大等特性,广泛应用于石油化工工业、航空航天工业等的密封中。然而,PTFE在高速重载等恶劣摩擦环境中因磨损过大引发的变形,极易造成密封失效。为了进一步提高PTFE的综合性能,填充改性是一种有效的方法。本文对比研究了填充氮化硼(BN)、石墨烯(GNs)、二硫化钼(MoS2)、氟化石墨(FGr)和共混聚酰亚胺(PI)改性PTFE的力学性能、导热性能、摩擦磨损性能及热学性能,并将材料学研究的结果运用到组合密封结构中进行密封能行的分析。主要工作和结论如下:(1)确定聚四氟乙烯牌号为M-18F,并对PTFE成型工艺中模压压力、烧结温度以及降温速率对其拉伸性能的影响进行实验探究。发现在烧结温度和降温速率不变时,50MPa下成型的样品,拉伸强度可达65MPa,断裂伸长率可达380%,拉伸力学及密实程度都较好;在模压压力和降温速率相同时,360℃的温度下烧结的PTFE拉伸强度为74MPa,断裂伸长率为380%,拉伸力学性能最好;在模压压力和烧结温度不变时,50℃/h降温时实验板材几乎不发生翘曲变形且拉伸力学性能最优。所以之后的成型工艺参数为:模压压力50MPa、烧结温度360℃、降温速率50℃。(2)通过制备MoS2/PTFE、BN/PTFE、GNs/PTFE材料,探究润滑填料对PTFE性能的影响。拉伸力学结果表明三种润滑填料加入PTFE后,GNs含量小于1%wt时,由于石墨烯本身粒径小、比表面积大,可以充分发挥其表面效应有效增加复合材料界面强度,进而对复合材料起到增韧增强的效果使得GNs/PTFE复合材料拉伸力学性能上升。当GNs含量为1%wt时,复合材料拉伸强度与断裂伸长率最好到73MPa及368%。BN和MoS2则使得复合材料的拉伸力学性能持续下降;三种复合材料的导热性能都增加明显;三种润滑填料都能提高复合材料的耐磨性能,少量GNs(1%wt)加入复合材料摩擦系数基本不变,耐磨性增加20倍,BN的加入使得复合材料耐磨性增加的同时摩擦系数明显降低,当BN含量10%wt,复合材料摩擦系数为0.19,MoS2的加入明显增加了复合材料的摩擦系数,当MoS2含量10%wt,复合材料摩擦系数为0.25,对减摩不利;三种润滑填料的加入使得复合材料的膨胀性呈现出上升趋势。(3)比较了两种增强填料PI、FGr分别与BN复合填充PTFE复合材料制品的性能,并对混合、磨损机理进行探究。采用环-块摩擦试验机、万能材料试验机、邵氏D硬度计、导热系数测定仪、DSC等对其摩擦学性能、力学性能、硬度、导热性能以及热学性能的进行研究。结果表明同等增强填料含量(以15%wt为例)下PI/BN/PTFE体系和FGr/BN/PTFE体系复合材料力学性能和导热都较好,能满足工程要求,PI/BN/PTFE复合材料的硬度为63HD明显大于FGr/BN/PTFE体系的56HD;DSC结果表明PI含量的变化对PTFE复合材料的结晶能力影响不大,FGr的加入则加快了结晶速率,使得复合材料结晶度增加;PI/BN/PTFE复合材料的摩擦学性能明显优于FGr/BN/PTFE体系。在PI/BN/PTFE复合材料最优配比下(15%wt PI),复合材料的摩擦系数为0.187,磨损率为2.9×10-6 mm3/(N·m),较纯PTFE提高近300倍,较PTFE-BN复合材料提高近27倍,可在低速高摩擦载荷(300N)或低载荷高摩擦转速(300 r/min)下使用。在FGr/BN/PTFE复合材料最优配比下(5%wt FGr),复合材料的摩擦系数为0.17,磨损率为181× 10-6 mm3/(N·m),较纯PTFE只提高7倍左右。(4)使用最优配比下PI/BN/PTFE、FGr/BN/PTFE复合材料性能参数对组合密封件进行结构设计和有限元模型分析。发现组合密封件的最大接触应力发生在改性PTFE衬套的下部与密封槽接触的部位,大小为48.46MPa,最大等效Mises应力发生在改性PTFE衬套与O型圈接触的部位,大小为22.61MPa;最大Mises应力发生的位置会随压力的增大而发生变化,最大接触应力发生的位置则基本不变,数值都与密封压力呈现正向相关性;材料的性能参数对组合密封件的密封性能影响很大,且PI/BN/PTFE复合材料参数的组合密封件不仅能满足实际的工程密封要求,而且密封性能较FGr/BN/PTFE复合材料更加优越。