【摘 要】
:
细胞凋亡是由半胱天冬酶层级激活开始,随后广泛切割细胞内底物来执行的。起始半胱天冬酶,比如哺乳动物中的caspase-9和果蝇中的Dronc,通过自剪切来完成自己的激活过程。凋亡体是一种以多聚体形式存在的接合蛋白复合体,凋亡体的作用是与起始半胱天冬酶相互作用,极大的加速起始半胱天冬酶的自激活过程。目前,高等生物凋亡体的高分辨率结构还没有得到解析,凋亡体对起始半胱天冬酶的激活过程的分子机制也尚不明了。
论文部分内容阅读
细胞凋亡是由半胱天冬酶层级激活开始,随后广泛切割细胞内底物来执行的。起始半胱天冬酶,比如哺乳动物中的caspase-9和果蝇中的Dronc,通过自剪切来完成自己的激活过程。凋亡体是一种以多聚体形式存在的接合蛋白复合体,凋亡体的作用是与起始半胱天冬酶相互作用,极大的加速起始半胱天冬酶的自激活过程。目前,高等生物凋亡体的高分辨率结构还没有得到解析,凋亡体对起始半胱天冬酶的激活过程的分子机制也尚不明了。Dark是哺乳动物中凋亡体蛋白Apaf-1在果蝇细胞中的同源蛋白。早期对Dark凋亡体蛋白的生化分析结果显示,Dark凋亡体蛋白在溶液中是以单体形式存在的。在与dATP共同孵育以后,Dark单体会发生寡聚化,形成一个寡聚体复合物,促进起始半胱天冬酶Dronc的激活。本研究的目的是期望获得高分辨率的Dark凋亡体以及Dark凋亡体与Dronc复合物的三维结构信息,阐述Dark凋亡体激活Dronc可能的分子机制,并通过生物化学手段加以验证。经过对Dark凋亡体和Dark/Dronc复合物蛋白的长时间优化以及数据收集条件摸索,作者与合作者首先利用单颗粒冷冻电子显微镜技术获得了分辨率为4.0?的果蝇Dark凋亡体结构。分析整体结构可知,Dark凋亡体总分子量为2.5 MDa,由16个Dark蛋白单体组成,分为上下两层,每层由8个Dark单体构成,呈八次对称。Dark单体分子间的接合面与线虫中的CED-4凋亡体单体间的接合面相似。同时,作者在研究中发现,即使在缺少d ATP作用的情况下,起始半胱天冬酶Dronc本身也可以促使Dark蛋白寡聚化,形成复合体,并促进Dronc的激活。起始半胱天冬酶Dronc与Dark凋亡体蛋白之间的相互作用,是通过二者各自氨基端的CARD结构域实现的。随后,作者通过单颗粒冷冻电子显微镜的方法得到了分辨率为4.1?的果蝇Dark凋亡体结合Dronc-CARD结构域的复合物结构。在Dark/Dronc-CARD复合体结构中,16个Dronc-CARD分子处于Dark凋亡体上下两层之间,同样分为上下两层。每一个Dronc-CARD单体通过两个界面与Dark分子的CARD结构域以及WD40重复结构域相互作用,这两个作用界面对于Dark凋亡体对Dronc的激活起着重要作用。
其他文献
太赫兹频段携带了丰富信息,且安全性高,其独特的性能展现出了极为可观的应用前景。本文主要研究了基于介质结构的太赫兹吸波器,传统的太赫兹吸波器大多数是实现单频带、多频带或者窄带吸收,其中有些是基于图案化石墨烯结构,该结构加工较为复杂,并且存在一定的边缘效应。基于介质结构的太赫兹吸波器能够实现几乎覆盖整个太赫兹波段的超宽带高性能吸收,解决了传统吸波器只能窄带吸收的窘境,其结构相对简单,大大减少了制作成本
行波管是微波真空器件中的一类非常重要的器件,具有工作频带宽、输出功率大、增益高等优点,在星间通信、雷达、电子对抗等领域起着重要的作用,在太赫兹成像、天文研究、生物医疗等方面也具有广泛的应用前景。随着现代加工技术的不断进步,行波管也在朝着小型化、集成化等方向发展,微带线行波管是非常具有应用潜力的一类行波管,本文主要针对微带型行波管的关键问题进行研究,主要内容分为如下三个部分:(1)一种三维微带线慢波
随着电子信息产业的迅速发展,可穿戴医疗保健设备逐渐融入到人们的日常生活当中。为了给人们带来更好的使用体验,可穿戴医疗保健设备正在朝着小尺寸、低功耗和高准确度等多个方向发展,但同时也为其中的生物电信号采集系统的设计带来了巨大挑战。仪表放大器和模数转换器是生物电信号采集系统中的重要部分,其性能的好坏将对系统性能产生直接影响。本论文主要针对低功耗高性能仪表放大器和模数转换器进行研究,分别介绍了仪表放大器
高速高精度模数转换器(ADC)是模拟电路和数字电路进行连接所必须的电路。流水线型模数转换器(Pipelined ADC)由于可以级联很多低精度的子ADC,所以精度和转换速度可以做到很高,但是相邻两级子ADC之间需要插入一个放大器,所以功耗比较大。逐次逼近型模数转换器(SAR ADC)与Pipelined ADC相比不存在级间放大器,且只有一个比较器,所以功耗相对来说较低,由于每个量化周期只能量化出
结构生物学作为现代生命科学的前沿和带头学科之一,在对生命现象与规律的研究中发挥着举足轻重的作用。结构生物学研究手段主要有X-射线晶体学,核磁共振波谱学(NMR)及冷冻电子显微学(Cryo-EM)等,每种方式都有其相应的特点。X-射线晶体学适用于分子量较小的蛋白质,需要蛋白质能够形成规则的三维晶体,利用晶体衍射数据解析得到三维结构。核磁共振波谱学可以测定不同溶液状态下的结构,用于研究分子的柔性、分子
物理世界中,我们能接触到信号都是模拟的。模拟信号作为易于理解的连续信号,当需要在电子设备中进行存储和传输时,必须要转换为二进制的数字信号。因此我们可以说模数转换器是连接物理世界和虚拟电子世界的桥梁。由于模数转换器结构复杂,模块众多,所以在集成电路设计中常常成为设计者的重心之一。近年来,随着5G通信技术的普及,人们对于高带宽、高码率的需求愈发强烈。然而在便携式设备(如智能手机、平板电脑)的电池技术没
目的 研究眼睑热敷、睑板腺按摩联合典必殊眼膏治疗睑板腺功能障碍性干眼症的疗效。方法 选取2020年5月-2021年5月在我院诊治的68例睑板腺功能障碍性干眼症患者为研究对象,采用随机数字表法分为对照组和观察组,各34例。对照组采用眼睑热敷、睑板腺按摩治疗,观察组在对照组基础上联合典必殊眼膏治疗,比较两组临床疗效、干眼症表现消失时间、泪液总分泌量、泪膜破裂时间、临床症状评分以及临床不良反应发生情况。
近年来,可延展柔性电子技术已被广泛应用于实现可穿戴器件、可重构器件等新型电子器件。射频电路作为电子系统的重要组成部分,其柔性化是扩展柔性电子应用的重要一环。微带结构是射频微波电路中的重要结构之一,实现可延展柔性微带结构可以有效推动柔性射频电路的发展。然而传统微带结构的地平面结构不具有可延展性,难以仅通过导带结构的改变实现柔性微带结构。因此,以微带结构地平面的可延展柔性化设计为核心,探索并实现射频微
Atiyah-Singer指标定理将流形上微分算子的指标与流形本身的拓扑不变量建立了联系,经典的?A-亏格的零化定理声称如果一个spin流形带有正的数曲率,那么它的?A-亏格为零,定理成立的原因就在于?A-亏格所对应的微分算子没有调和的spinor。Witten亏格是由Witten把Atiyah-Singer指标定理应用到圈道路空间(loop space)上而定义的,当底流形的第一Pontrjag
令G是阶为n的简单无向图,A(G)是G的邻接矩阵,D(G)=diag(d1,d2,···,dn)是其顶点的度对角阵.那么Q(G)=A(G)+D(G)称为G的无符号拉普拉斯矩阵.G的无符号拉普拉斯谱半径q1(G)就是Q(G)的最大特征值.给定一个不含孤立点的图G=(V,E),G的一个全控制集S称为定位全控制集,如果对V-S中任何两个不同的顶点u和v,都有N(u)∩S N(v)∩S,其中N(u)={w